The WEST platform aims at testing ITER like W divertor targets in an integrated tokamak environment. To operate long plasma discharges, IR thermography is required to monitor the main plasma facing components by means of real time surface temperature measurements, while providing essential data for various physics studies. To monitor the new divertor targets, the WEST IR thermography protection system has been deeply renewed, to match the new tokamak configuration. It consists of 7 endoscopes located in upper ports viewing the whole lower divertor and the 5 heating devices. Electronic devices and computers allow data storage of ≈3 Gb/s IR images and real time video frames processing at 50 Hz rate, to ensure the protection of the main plasma facing components during plasma discharges by a feedback control of the power injected by the heating systems. Each endoscope provides 2 views covering 2 divertor sectors of 30°(toroidally) and 1 view of a heating antenna. Each optical line is composed of a tight entrance window followed by a head objective which forms an image transported through the endoscope by a series of 4 optical relays and mirrors, up to a camera objective. Finally, 12 IR cameras specially developed for WEST environment capture the thermographic data, at the wavelength of 3.9 μm, with a 640 × 512 pixels frame size. The paper describes the design constraints and diagnostic technologies: optics, mechanics, electronics, hard & software, cameras. Tvhe laboratory characterization procedures (Modulation Transfer Function, slit response, calibration), and the measurement performance results are given (spatial resolution, temperature threshold). Finally, first results obtained during experimental campaigns in WEST are presented.