ObjectiveTo evaluate the efficacy of multiple ultraviolet (UV) light decontamination devices in a radiology procedure room.DesignLaboratory evaluation.MethodsWe compared the efficacy of 8 UV decontamination devices with a 4-minute UV exposure time in reducing recovery of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and Clostridium difficile spores on steel disk carriers placed at 5 sites on a computed tomography patient table. Analysis of variance was used to compare reductions for the different devices. A spectrometer was used to obtain irradiance measurements for the devices.ResultsFour standard vertical tower low-pressure mercury devices achieved 2 log10CFU or greater reductions in VRE and MRSA and ~1 log10CFU reductions in C. difficile spores, whereas a pulsed-xenon device resulted in less reduction in the pathogens (P<.001). In comparison to the vertical tower low-pressure mercury devices, equal or greater reductions in the pathogens were achieved by 3 nonstandard low-pressure mercury devices that included either adjustable bulbs that could be oriented directly over the exam table, a robotic base allowing movement along the side of the table during operation, or 3 vertical towers operated simultaneously. The low-pressure mercury devices produced primarily UV-C light, whereas the pulsed-xenon device produced primarily UV-A and UV-B light. The time required to move the devices from the corner of the room and set up for operation varied from 18 to 59 seconds.ConclusionsMany currently available UV devices could provide an effective and efficient adjunct to manual cleaning and disinfection in radiology procedure rooms.