The paper presents the results concerning the influence of concentration and storage time on the equilibrium surface tension of chemical solutions used in a clean-in place (CIP) system. Standard cleaning solutions (prepared under laboratory conditions) and industrial solutions (used in a CIP system in a brewery) were subjected to tests. Solutions from the brewery were collected after being regenerated and changes in equilibrium surface tension were studied during a three-month storage. In the statistical analysis of the solutions, standard deviations were determined in relation to the averages, and a Tukey’s multiple comparison test was performed to determine the effect of dependent variables on the surface tension of solutions. From the results, a nonlinear regression model was developed that provided a mathematical description of the kinetics of changes in the wetting properties of the solutions during their storage. A linear–logarithmic function was adopted to describe the regeneration. Numerical calculations were performed based on the nonlinear least squares method using the Gauss–Newton algorithm. The adequacy of the regression models with respect to the empirical data was verified by the coefficient of determination R and the standard error of estimation Se. The results showed that as the concentration of the substance in the cleaning solution increased, its wetting properties decreased. The same effect was observed with increased storage time as the greatest changes occurred during the first eight weeks. The study also showed that the use of substances to stabilize the cleaning solutions prevented deterioration of their wetting properties, regardless of the concentration of the active substance or storage time.