Artificial upwelling is a geoengineering method to repair and improve marine ecosystems, and its operation requires long-term and continuous temperature field observation. However, existing methods are rarely seen to accomplish such observation. In this study, we investigate the coastal acoustic tomography (CAT) to obtain the long-term horizontal temperature field of an artificial upwelling area in an anechoic tank. We conduct four sets of experiments with different CAT station numbers and compare their data with those collected from temperature sensors. By analyzing the travel time from the CAT experiments, the horizontal temperature field of the upwelling area could be mapped. The CAT results and the comparison results show that the surface temperature of the observed area decreases by approximately 3 °C after upwelling, while the temperature of where the CAT is deployed decreases by about 1 °C; the temperature is lowest at the center of the upwelling area. Increasing the number of stations and station spacing would improve the temperature mapping accuracy. Therefore, the feasibility of using the CAT system to observe artificial upwelling is proved valid. This study indicates the potential application of CAT in temperature field observation in artificial upwelling area in the sea.