Abstract:We study a 4d supersymmetric matrix model with a cubic term, which incorporates fuzzy spheres as classical solutions, using Monte Carlo simulations and perturbative calculations. The fuzzy sphere in the supersymmetric model turns out to be always stable if the large-N limit is taken in such a way that various correlation functions scale. This is in striking contrast to analogous bosonic models, where the fuzzy sphere decays into the pure Yang-Mills vacuum due to quantum effects when the coefficient of the cubi… Show more
“…It is essentially the hybrid Monte Carlo (HMC) algorithm, which has been applied in similar models in refs. [21,22,24,25,39]. The computational effort grows as O(N 3 ) in the present model.…”
The matrix model formulation of superstring theory offers the possibility to understand the appearance of 4d space-time from 10d as a consequence of spontaneous breaking of the SO(10) symmetry. Monte Carlo studies of this issue is technically difficult due to the so-called sign problem. We present a practical solution to this problem generalizing the factorization method proposed originally by two of the authors (K.N.A. and J.N.). Explicit Monte Carlo calculations and large-N extrapolations are performed in a simpler matrix model with similar properties, and reproduce quantitative results obtained previously by the Gaussian expansion method. Our results also confirm that the spontaneous symmetry breaking indeed occurs due to the phase of the fermion determinant, which vanishes for collapsed configurations. We clarify various generic features of this approach, which would be useful in applying it to other statistical systems with the sign problem.
“…It is essentially the hybrid Monte Carlo (HMC) algorithm, which has been applied in similar models in refs. [21,22,24,25,39]. The computational effort grows as O(N 3 ) in the present model.…”
The matrix model formulation of superstring theory offers the possibility to understand the appearance of 4d space-time from 10d as a consequence of spontaneous breaking of the SO(10) symmetry. Monte Carlo studies of this issue is technically difficult due to the so-called sign problem. We present a practical solution to this problem generalizing the factorization method proposed originally by two of the authors (K.N.A. and J.N.). Explicit Monte Carlo calculations and large-N extrapolations are performed in a simpler matrix model with similar properties, and reproduce quantitative results obtained previously by the Gaussian expansion method. Our results also confirm that the spontaneous symmetry breaking indeed occurs due to the phase of the fermion determinant, which vanishes for collapsed configurations. We clarify various generic features of this approach, which would be useful in applying it to other statistical systems with the sign problem.
“…These models present an appealing picture of a geometrical phase emerging as the system cools and suggests a scenario for the emergence of geometry in the early universe. Impact of supersymmetry is to stabilize the geometry further against quantum fluctuations [235]. …”
Section: Initiation To Noncommutative Gauge Theory On the Fuzzy Spherementioning
The subject of matrix field theory involves matrix models, noncommutative geometry, fuzzy physics and noncommutative field theory and their interplay. In these lectures, a lot of emphasis is placed on the matrix formulation of noncommutative and fuzzy spaces, and on the non-perturbative treatment of the corresponding field theories. In particular, the phase structure of noncommutative φ 4 theory is treated in great detail, and an introduction to noncommutative gauge theory is given.
“…This approach has been successfully pursued in a number of studies [117,118,119,120,121,122,123,124,125,126,127,128,129,130]. As an example of results, the left-hand-side panel of fig.…”
Section: Results For Supersymmetric Modelsmentioning
Numerical simulation is an important non-perturbative tool to study quantum field theories defined in non-commutative spaces. In this contribution, a selection of results from Monte Carlo calculations for non-commutative models is presented, and their implications are reviewed. In addition, we also discuss how related numerical techniques have been recently applied in computer simulations of dimensionally reduced supersymmetric theories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.