During the last two decades, the coastal environment of southeast India has experienced intense developments in industry, urbanization and aquaculture. Moreover, the 2004 mega tsunami has devastated this coast, thus affecting the coastal sediment characteristics. These two phenomena prompted a study to characterize the sediment, to understand the mechanisms influencing the distribution of heavy metals and to create baseline data for future impact assessment. Results showed that the coastal sediment was carpeted with a mosaic of sand and silty sand with a minor amount of clay. Heavy metal values showed maximum variation for Fe and minimum for Cd. Their average values showed the following decreasing trend:This study shows that the major source of metals at Kalpakkam coast are land-based anthropogenic ones, such as, discharge from industrial waste, agricultural waste, urban, municipal and slum sewage into the Buckingham canal, which in turn discharges into the sea through backwaters, particularly during northeast monsoon period. A clear signature of the role of backwater discharge increasing the concentration of a few metals in the coastal sediments during monsoon period was observed. Assessments of the degree of pollution, concentration factor (CF), geoaccumulation index (I geo ) and pollution load index (PLI) have been calculated. CF values and I geo indicated that the coastal sediment is moderately polluted by Cu and Cd. Increase in Cu, Pb and Zn concentration during the monsoon period (October-January) compared to the rest of the year was noticed. Factor analysis and correlation among the heavy metals concluded that Cr, Ni, Cd and Fe are of crustal origin, whereas, Cu, Pb and Zn are from anthropogenic sources. Organic carbon content in the sediment increased during monsoon period, pointing to the role of land runoff and backwater discharge in enhancing its content. The study also elucidates the impact of the recent tsunami in depleting metal content in the coastal sediment as compared to the pre-tsunami period.