Two series of dehydropeptides of the general formulae Boc-Gly-X-Phe-p-NA, Boc-Gly-Gly-X-Phe-p-NA, Gly-X-Gly-Phe-p-NA.TFA, and Boc-Gly-X-Gly-Phe-p-NA, with X = Delta(Z)Phe and DeltaAla, were studied with NMR in DMSO and CDCl(3)-DMSO, and with CD in MeOH, MeCN, and TFE. The NMR spectra measured in DMSO suggest that peptides with the DeltaPhe residue next to Phe are folded whereas peptides with Gly between DeltaPhe and Phe are less ordered. NMR spectra of DeltaAla-containing peptides indicate that these peptides are flexible and their conformational equilibria are populated by many different conformations. The CD spectra show that conformational properties of the peptides studied are distinctly influenced by a mutual position of the dehydroamino acid residue and the p-NA group. They indicate that all dehydropeptides with the DeltaPhe residue, Boc-Gly-DeltaAla-Phe-p-NA, and Boc-Gly-Gly-DeltaAla-Phe-p-NA adopt ordered conformations in all solvents studied, presumably of the beta-turn type. The last two peptides exhibit surprising chiroptical properties. Their spectra show exciton coupling-like couplets in the region of the p-NA group absorption. This shape of CD spectra suggests a rigid, chiral conformation with a fixed disposition of the p-NA group. The CD spectra indicate that Boc-Gly-DeltaAla-Gly-Phe-p-NA and Gly-DeltaAla-Gly-Phe-p-NA.TFA are unordered, independently of the solvent.