The valuation of ecosystem services (ESs) is crucial for preserving ecosystems, assessing natural resources, and making decisions regarding compensation. In this study, we employed the InVEST model’s habitat quality (HQ) module to calculate the HQ and degradation levels in the study area using land use/land cover (LULC) data from 2000 to 2020. Our analysis utilized quantitative methods, including spatial correlation, hotspot analysis, and geo-probing, to determine the value of ESs and identify trends. Furthermore, we examined the spatial and temporal variation in the significance of ESs and their driving factors. The results show the following. (1) The primary LULC types in the Zhundong coalfield from 2000 to 2020 are grassland and barren areas. (2) The average value of the HQ index in the study area exhibited a generally decreasing trend. Between 2000 and 2010, HQ significantly declined, particularly in the region’s large barren industrial and mining zones. However, over time, the proportion of sites with minimal degradation improved steadily, resulting in better overall HQ in the study area by 2020. This pertains to the measures put in place by the local government to safeguard and rehabilitate the ecosystem. (3) The spatial distribution of the ecosystem service value (ESV) aligns with changes in HQ and LULC, with significant hotspots primarily observed in forest and grassland areas, nature reserves, and areas around water sources. (4) LULC, temperature, annual precipitation, and elevation are the main drivers of spatial variation in the ESV in the Zhundong area; the spatial variation in the ESV in the Zhundong coalfield is primarily influenced by the interaction between human factors and natural factors, in which LULC plays a dominant role. This study’s findings can guide the development of rational ecological planning, integrating resource conservation mining with effective zoning management.