The impact of rainfall on water quality may be more important in semi-arid regions, where rainfall is concentrated over a couple of months. To explore the impact of rainfall changes on water quality, e.g., nitrogen (TN) and phosphorous (TP), the diversion from Luan River to Tianjin Watershed in the northern semi-humid area was selected as the study area. TN and TP concentrations in rivers and the Yuqiao Reservoir during the three-year high-flow season (2019â2021) were analyzed. The response relationship and influencing factors among the watershedâs biogeochemical process, rainfall, and water quality were clarified. The results showed that rainfall in the high flow season mainly controlled the river flow. The concentration of TN and TP in the inflow rivers is regulated by rainfall/flow, while the concentration of TN and TP in the water diversion river has different variation characteristics in the water diversion period and other periods. The lowest annual concentrations of TN and TP were observed in the normal year, while the highest annual concentration was observed in the wet year, indicating that the hydrological process drove the nutrient transport in the watershed. For the tributaries, the Li River catchment contributed a large amount of N and P to the aquatic environment. For the reservoir, the extreme TN concentrations were the same as the tributaries, while the extremes of TP concentrations decreased from the dry year to wet year, which was in contrast to the tributaries. The spatial variation of TN and TP concentrations in the reservoir showed that the concentration decreased following the flow direction from the river estuary to the reservoir outlet. Considering climate change, with the increase of rainfall in North China in the future, the TN and TP transport fluxes in the watershed may continue to increase, leading to the nitrogen and phosphorus load of the downstream reservoir. To ensure the impact of the increase of potential N and P output fluxes in the watershed on the water quality of the reservoir area, it is necessary to strengthen the effective prevention and control of non-point source pollution in the watershed.