2021
DOI: 10.1007/s10825-020-01618-y
|View full text |Cite
|
Sign up to set email alerts
|

Impacts of core gate thickness and Ge content variation on the performance of Si1−xGex source/drain Si–nanotube JLFET

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
8
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 11 publications
(8 citation statements)
references
References 26 publications
0
8
0
Order By: Relevance
“…As we introduced the SiGe in source and drain side of NT JLFET which leads to change in the flat band voltage V fb with variation in the Ge content, x and which is given by 24 Vfbgoodbreak=ϕmgoodbreak−()ϕsigoodbreak+ΔEnormalcssiϕm/qgoodbreak−ΔEnormalgssi/qgoodbreak+UTln()NnormalV,si/NnormalV,siNT0.5emgoodbreak−italicqNnormalfCox1$$ {V}_{\mathrm{f}\mathrm{b}}={\phi}_{\mathrm{m}}-\left(\begin{array}{l}{\phi}_{\mathrm{si}}+{\left(\Delta {E}_{\mathrm{c}}\right)}_{s-\mathrm{si}}{\phi}_{\mathrm{m}}/q\\ {}-{\left(\Delta {E}_{\mathrm{g}}\right)}_{s-\mathrm{si}}/q+{U}_{\mathrm{T}}\ln \left({N}_{\mathrm{V},\mathrm{si}}/{N}_{\mathrm{V},\mathrm{si}-\mathrm{NT}}\right)\end{array}\right)\kern0.5em -\frac{qN_{\mathrm{f}}}{C_{\mathrm{ox}1}} $$ …”
Section: Model Descriptionmentioning
confidence: 99%
See 2 more Smart Citations
“…As we introduced the SiGe in source and drain side of NT JLFET which leads to change in the flat band voltage V fb with variation in the Ge content, x and which is given by 24 Vfbgoodbreak=ϕmgoodbreak−()ϕsigoodbreak+ΔEnormalcssiϕm/qgoodbreak−ΔEnormalgssi/qgoodbreak+UTln()NnormalV,si/NnormalV,siNT0.5emgoodbreak−italicqNnormalfCox1$$ {V}_{\mathrm{f}\mathrm{b}}={\phi}_{\mathrm{m}}-\left(\begin{array}{l}{\phi}_{\mathrm{si}}+{\left(\Delta {E}_{\mathrm{c}}\right)}_{s-\mathrm{si}}{\phi}_{\mathrm{m}}/q\\ {}-{\left(\Delta {E}_{\mathrm{g}}\right)}_{s-\mathrm{si}}/q+{U}_{\mathrm{T}}\ln \left({N}_{\mathrm{V},\mathrm{si}}/{N}_{\mathrm{V},\mathrm{si}-\mathrm{NT}}\right)\end{array}\right)\kern0.5em -\frac{qN_{\mathrm{f}}}{C_{\mathrm{ox}1}} $$ …”
Section: Model Descriptionmentioning
confidence: 99%
“…The high electric field in the lateral direction in nanotube causes tunneling of electrons from valence band of channel region to conduction band of drain region in the OFF‐state which results in the L‐BTBT induced GIDL current. Therefore, GIDL current I GIDL has strong dependance on the electric field and energy band gap as given 24,25 IGIDLgoodbreak=AB[]E12(),r1LgeBE1r1Lggoodbreak+E22(),r2LgeBE2r2Lg$$ {I}_{\mathrm{GIDL}}=\frac{A}{B}\left[{E}_1^2\left({r}_1,{L}_g\right){e}^{\left(-\frac{B}{E_1\left({r}_1,{L}_g\right)}\right)}+{E}_2^2\left({r}_2,{L}_g\right){e}^{\left(-\frac{B}{E_2\left({r}_2,{L}_g\right)}\right)}\right] $$ …”
Section: Model Descriptionmentioning
confidence: 99%
See 1 more Smart Citation
“…In addition, the researchers propose to utilize the valence band discontinuity of heterojunctions to increase the tunneling width of the NT JLFET. The presence of the heterojunction increases the channel-drain barrier height and tunneling width, thus reducing the I OFF [15][16][17]. The lattice mismatch between SiGe and Si produced the biaxial tensile strain in the channel radially and compressive strain along the channel direction which results in electron mobility degradation above germanium content 30% [16].…”
Section: Introductionmentioning
confidence: 99%
“…The lattice mismatch between SiGe and Si produced the biaxial tensile strain in the channel radially and compressive strain along the channel direction which results in electron mobility degradation above germanium content 30% [16]. When the channel length of the NT JLFET is less than 10 nm, the presence of the heterojunction interface causes the threshold voltage to decrease dramatically [17]. Researchers used intrinsic pockets to increase the tunneling width of the NT JLFET and decrease the I OFF .…”
Section: Introductionmentioning
confidence: 99%