Nordic catchments provide a variety of ecosystem services, from harvestable goods to mitigation of climate change and recreational possibilities. Flows of supplied ecosystem services depend on a broad range of factors, including climate, hydrology, land management and human population density. The aims of this study were: 1) to quantify the total economic value (TEV) of consumed ecosystem services across Nordic catchments, 2) to explain variation in ecosystem service value using socio-geographic and natural factors as explanatory variables in multiple linear regression, and 3) to determine which societal groups benefit from these ecosystem services. Furthermore, we tested the scientific rigour of our framework based on the concept of final ecosystem services (FES). We used a spatially explicit, integrative framework for ecosystem services quantification to compile data on final ecosystem services provision from six catchments across Denmark, Finland, Norway and Sweden. Our estimates showed a broad variation in TEV and in the proportion contributed by separate services, with the highest TEV of €7,199 ± 4,561 ha-1 y-1 (mean ± standard deviation) in the Norwegian Orrevassdraget catchment, and the lowest TEV of €183 ± 517 ha-1 y-1 in the Finnish Simojoki catchment. The value of material services was dependent on both geographic factors and land management practices, while the value of immaterial services was strongly dependent on population density and the availability of water. Using spatial data on land use, forest productivity and population density in a GIS analysis showed where hotspots of ecosystem services supply are located, and where specific stakeholder groups benefit most. We show that our framework is applicable to a broad variety of data sources and across countries, making international comparative analyses possible.