Learning Vector Quantization (LVQ) is a method that train the competitives layer with supervised. The competitives layer will learn automatically to classify the input vector given. If some input vectors has the short distance then the input vector will be grouped into the same class. The LVQ method can be used to classify the data into some classes or categories. At this paper, the LVQ method will be applied to classify if someone is suffer potenciate of heart desease or not. The data that be trained are 268 data of heart desease patient from UCI (University of California at Irvine) with 10 variables that are factors influence that infected of heart desease. From some trials showed that the learning rate (α) = 0.25, decrease of learning rate (Decα) = 0.1, and the minimum learning rate (Minα) = 0.001 are values that give a good prediction with level of accuracy is about 66.79 %.Keywords: Learning Vector Quantization, Classify, Heart Desease
PendahuluanLearning Vector Quantization (LVQ) merupakan jaringan lapisan tunggal (single-layer net) di mana lapisan masukan terkoneksi secara langsung dengan setiap neuron pada keluaran. Koneksi antar neuron tersebut dihubungkan dengan bobot/weight. Neuron-neuron keluaran pada LVQ menyatakan suatu kelas atau kategori tertentu [2] . Bobot merupakan nilai matematis dari koneksi yang mentransfer data dari satu lapisan ke lapisan lainnya, yang berfungsi untuk mengatur jaringan sehingga dapat menghasilkan output yang diinginkan. Bobot pada LVQ sangat penting, karena dengan bobot ini input dapat melakukan pembelajaran dalam mengenali suatu pola. Vektor bobot berfungsi untuk menghubungkan setiap neuron pada lapisan input dengan masing-masing neuron pada lapisan output. Vektor bobot biasanya dituliskan dengan w tj =() dimana t menunjukkan kelas yang nilainya antara 1 sampai K, dengan K adalah banyaknya kelas pada lapisan output, sedangkan m adalah banyaknya variabel yang digunakan. Pada tulisan dibahas algoritma LVQ dan penerapannya untuk memprediksi terjangkitnya penyakit jantung pada seseorang.
Arsitektur JaringanArsitektur LVQ terdiri dari lapisan input (input layer), lapisan kompetitif (terjadi kompetisi pada input untuk masuk ke dalam suatu kelas berdasarkan kedekatan jaraknya) dan lapisan output (output layer). Lapisan input dihubungkan dengan lapisan kompetitif oleh bobot. Dalam lapisan kompetitif, proses pembelajaran dilakukan secara terawasi [3] . Input akan bersaing untuk dapat masuk ke dalam suatu kelas. Hasil dari lapisan kompetitif ini berupa kelas, yang kemudian akan dihubungkan dengan lapisan output oleh fungsi aktivasi. Fungsi