2021
DOI: 10.1016/j.rineng.2021.100228
|View full text |Cite
|
Sign up to set email alerts
|

Implementation of hybrid neuro-fuzzy and self-turning predictive model for the prediction of concrete carbonation depth: A soft computing technique

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
14
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
10

Relationship

2
8

Authors

Journals

citations
Cited by 61 publications
(15 citation statements)
references
References 37 publications
0
14
0
1
Order By: Relevance
“…A reação leva à alteração da microestrutura do concreto e à redução do pH nos poros do material, além de uma redução global da alcalinidade do sistema (CASCUDO et al, 2021;CASCUDO;CARASEK, 2022). À medida que o processo avança, desenvolve-se a corrosão do aço, que acarreta graves danos às estruturas de concreto (MALAMI et al, 2021).…”
Section: Introductionunclassified
“…A reação leva à alteração da microestrutura do concreto e à redução do pH nos poros do material, além de uma redução global da alcalinidade do sistema (CASCUDO et al, 2021;CASCUDO;CARASEK, 2022). À medida que o processo avança, desenvolve-se a corrosão do aço, que acarreta graves danos às estruturas de concreto (MALAMI et al, 2021).…”
Section: Introductionunclassified
“…Fang et al 22 used an image segmentation method to investigate the effect of pore structure on the split tensile strength of cellular concrete. Malami et al 23 used a neuro-fuzzy hybrid model composed of, an extreme learning machine (ELM), an adaptive neuro-fuzzy inference system (ANFIS), a multi-linear regression model (MLR), and SVR to study the impact of carbonization on reinforced concrete durability (R 0.96). Ashrafian et al 24 have developed an evolutionary-based ML model which give promising prediction of post-fire mechanical properties of green concrete.…”
Section: Introductionmentioning
confidence: 99%
“…AI and other computational machine learning models have been recently developed and have been demonstrated to be effective in comparison to various classical, statistical physics-based, and mathematical models [17][18][19][20]. The promising applications of AI-based models are not limited to the understanding and removal of HMs but also extend to the system identification of science and engineering problems [21][22][23][24][25][26][27]. The superiority of data-driven models is attributed to certain factors, such as the building of models, type of learning, data type, and basin characteristics.…”
Section: Introductionmentioning
confidence: 99%