In recent years, pervious concrete (PC) has gained much attention as one of the strategies for low-impact development (LID) in pavements due to its structural, economic, and road-user benefits. This study sought to review and evaluate changes in the mechanical, hydraulic, and durability performance of PC produced with cement and aggregate replacements. A meta-analysis was conducted to elucidate the feasible range of the replacement percentage and the number of materials that could be used to replace cement and aggregates; single or binary replacements were considered. Results indicated that cement-replacing materials, industrial wastes (IWA), and recycled aggregates (RA) met the minimum requirement for the mechanical, hydraulic, and durability properties of PC. The use of a single cement replacement material provided PC with better performance than when cement was replaced with two or more materials or when cement alone was used. Industrial waste was found to be a better replacement to aggregates than RA. The combined replacement of cement and aggregates with IWA and other cement-replacing materials was the most effective method for improving the mechanical, hydraulic, and durability performance of PC. Replacements of up to 40% was considered viable for cement replacement, while up to 50% replacement was considered practical for aggregate and combined replacement. PC incorporating different cement-replacing materials exhibited equivalent or improved mechanical properties and maintained hydraulic performance compared to cement-based PC. Nonetheless, limited studies are available on the durability performance of PC made with cement and/or replacements. Thus, the durability of PC coupled with the applicability of replacement materials acquired from different locations need to be evaluated to address the viability of producing more durable PC with the use of replacements.
This paper evaluates the effect of mix design parameters on the mechanical, hydraulic, and durability properties of pervious geopolymer concrete (PGC) made with a 3:1 blend of granulated blast furnace slag (GBFS) and fly ash (FA). A total of nine PGC mixtures were designed using the Taguchi method, considering four factors, each at three levels, namely, the binder content, dune sand addition, alkaline-activator solution-to-binder ratio (AAS/B), and sodium hydroxide (SH) molarity. The quality criteria were the compressive strength, permeability, and abrasion resistance. The Taguchi and TOPSIS methods were adopted to determine the signal-to-noise (S/N) ratios and to optimize the mixture proportions for superior performance. The optimum mix for the scenarios with a compressive strength and abrasion resistance at the highest weights was composed of a binder content of 500 kg/m3, dune sand addition of 20%, AAS/B of 0.60, and SH molarity of 12 M. Meanwhile, the optimum mix for the permeability-dominant scenario included a 400 kg/m3 of binder content, 0% of dune sand addition, 0.60 of AAS/B, and 12 M of SH molarity. For a balanced performance scenario (i.e., equal weights for the responses), the optimum mix was similar to the permeability scenario with the exception of a 10% dune sand addition. An ANOVA showed that the binder content and dune sand addition had the highest contribution toward all the quality criteria. Multivariable regression models were established to predict the performance of the PGC using the mix design factors. Experimental research findings serve as a guide for optimizing the production of PGC with a superior performance while conducting minimal experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.