In this paper, the Routh criterion has been used to analyze the stability of a self-excited induction generator-based isolated system which is regarded as an autonomous system. Special focus has been given to the load capacity of the self-excited induction generator. The state matrix of self-excited induction generators with resistor-inductor load has been established based on transient equivalent circuits in the stator stationary reference-frame. The recursive Routh table of self-excited induction generators is established by the characteristic polynomial coefficients of the state matrix. According to the Routh stability criterion, the necessary and sufficient condition to predict the critical loads of self-excited induction generators is deduced, from which the critical load impedance can be calculated. A simple self-excited induction generator-based isolated power system has been built up with a 2.2 kW self-excited induction generator. The theoretical analysis and experiments were all carried out based on this platform. In the range determined by the minimum excitation capacitance (C min ) and the maximum excitation capacitance (C max ), the critical loads under various power factors have been calculated. The agreement of the calculated theoretical results and experimental results demonstrate the effectiveness and accuracy of the proposed analysis method. The conclusions achieved lay a foundation for further application of Routh stability criterion in self-excited induction generator-based power systems analysis.