2019 Global Conference for Advancement in Technology (GCAT) 2019
DOI: 10.1109/gcat47503.2019.8978348
|View full text |Cite
|
Sign up to set email alerts
|

Implementation of PSO, it’s variants and Hybrid GWO-PSO for improving Reactive Power Planning

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
17
0
3

Year Published

2021
2021
2022
2022

Publication Types

Select...
5
1
1

Relationship

2
5

Authors

Journals

citations
Cited by 34 publications
(20 citation statements)
references
References 20 publications
0
17
0
3
Order By: Relevance
“…For the PSO-LM-BP algorithm, the PSO algorithm is used to iterate 50 times, and then, the optimal solution of the current population is transferred to the LM algorithm. The optimal solution is obtained when the LM algorithm reaches the ending condition [ 34 , 35 ].…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…For the PSO-LM-BP algorithm, the PSO algorithm is used to iterate 50 times, and then, the optimal solution of the current population is transferred to the LM algorithm. The optimal solution is obtained when the LM algorithm reaches the ending condition [ 34 , 35 ].…”
Section: Methodsmentioning
confidence: 99%
“…For the PSO-LM-BP algorithm, the PSO algorithm is used to iterate 50 times, and then, the optimal solution of the current population is transferred to the LM algorithm. The optimal solution is obtained when the LM algorithm reaches the ending condition [34,35]. For the PSO-BP algorithm, the particle population size is set as 20, the update range of velocity is (−5, 5), the update range of position is (−10, 10), and the inertia coefficient decreases linearly from 1 to 0 as the number of iterations increases.…”
Section: Pso-lm-bp Neural Network Algorithmmentioning
confidence: 99%
“…Komşu parçacığın deneyimine göre kendisinin ve komşusunun güncel değerlerinin karşılaştırılmasıyla elde edilen değer, iterasyon sırasında elde edilen en iyi değer olarak isimlendirilir. Parçacıkların hızı Eşitlik (12) ve konumu Eşitlik ( 13)'e göre güncellenir (Mahapatra et al (2019); Shi et al (2015); Gümüş et al (2021)). s213 maksimum güç noktasında salınım değerlerinin fazla olduğu gözlemlenmiştir.…”
Section: Artan İletkenlik Mgnt Algoritmasıunclassified
“…Her iterasyon işlemi sonucunda parçacık lokasyonları en iyi iki parçacığa göre güncellenir. PSO algoritmasının akış şeması Şekil-8'de gösterilmiştir(Mahapatra et al (2019);Shi et al (2015);Gümüş et al (2021)).…”
unclassified
See 1 more Smart Citation