Fluid leak detection represents a problem that has attracted the interest of researchers, but not exclusively because in industries and services leaks are frequently common. Indeed, in water or gas supplies, chemical or thermal plants, sea-lines or cooling/heating systems leakage rates can cause important economic losses and sometimes, what it is more relevant, environmental pollution with human, animal or plant lives at risk. This last issue has led to increased national and international regulations with different degrees of severity regarding environmental conservation.Early fluid detection represents an important challenge to avoid the problems mentioned above. This special issue was proposed with the aim of attracting new technological developments and methods in sensors based on physical, chemical or biological principles. The following is a summary of works published in this special issue representing the achievements obtained. They are organized according to the main topics and applications addressed in the special issue, which can serve to the reader as a first introduction guide to each work:1. CO2 and CH4 leakage in natural reservoir with micro-seismicity: In [1] an array of eight short-period borehole geophones, three pressure-temperature sensors and two fluid-sample sensors were deployed with the aim of detecting induced micro-seismicity associated with CO2 activity, including injection, within a natural reservoir in the Pembina oil field in Alberta/Canada. The primary objective was to investigate potentially occurring CO2-induced seismic signatures on a two-week period framing a substantial CO2 and CH4 leakage. Radar is the technology used for leaks detection in water distribution systems, the instrument is equipped with a monostatic antenna operating at a central frequency of 1.5 GHz. The data collected as images are conveniently processed and analyzed based on the identification of vertical and horizontal profiles in the images. Wireless Sensor Networks and Radio Frequency IDentification (RFID) is the technology used in [5] for the design and simulation of a water pipeline leakage monitoring system. The design is based on deploying a group of mobile wireless sensor nodes and allowing them to work cooperatively according to a prescheduled order. Only a node is active at a time while the remainders are sleeping, which are activated based on three kinds of events: location-based, time-based and interrupt-based. Each node, equipped with a pressure sensor, a microcontroller and a RFID reader, records pressures and its location based on its exposure to signals of active RFID tags placed outside of the pipeline surface. The mobile sensor nodes move with the water current from the pipeline source down to the sink where the node is collected and its memory content transferred to a computer for numerical analysis. In the context of water distribution systems at home, numerical models are tested in [6] to determine when an event occurs (tap open, high/low water consumption, seepage). This includes leak dete...