2018
DOI: 10.1007/s41549-018-0026-0
|View full text |Cite
|
Sign up to set email alerts
|

Implementing an Approximate Dynamic Factor Model to Nowcast GDP Using Sensitivity Analysis

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0

Year Published

2018
2018
2023
2023

Publication Types

Select...
4

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 24 publications
0
2
0
Order By: Relevance
“…The methods of the present study comprise a battery of multivariate time series techniques in the time and frequency domain such as testing for Granger‐causality in the frequency domain (Breitung & Candelon, 2006) and forecast accuracy testing between models in the time domain (Diebold & Mariano, 1995; Harvey et al, 1997). They have been successfully applied in diverse contexts; see, among many others, Tastan (2015), Aluko and Adeyeye (2020), and Fromentin and Tadjeddine (2020) for spectral Granger‐causality applications and Carstensen et al (2011) and Duarte and Süssmuth (2018) for applications of forecasting ability tests across models. To assess the cause–effect reaction time for frequency bands with significant Granger‐causality, a phase delay measure recently developed by Breitung and Schreiber (2018) is computed.…”
Section: Introductionmentioning
confidence: 99%
“…The methods of the present study comprise a battery of multivariate time series techniques in the time and frequency domain such as testing for Granger‐causality in the frequency domain (Breitung & Candelon, 2006) and forecast accuracy testing between models in the time domain (Diebold & Mariano, 1995; Harvey et al, 1997). They have been successfully applied in diverse contexts; see, among many others, Tastan (2015), Aluko and Adeyeye (2020), and Fromentin and Tadjeddine (2020) for spectral Granger‐causality applications and Carstensen et al (2011) and Duarte and Süssmuth (2018) for applications of forecasting ability tests across models. To assess the cause–effect reaction time for frequency bands with significant Granger‐causality, a phase delay measure recently developed by Breitung and Schreiber (2018) is computed.…”
Section: Introductionmentioning
confidence: 99%
“…E.g Abberger et al (2018). for Switzerland;Duarte and Süssmuth (2018) for Spain.23 For an overview of variable selection methods for partial least squares, seeMehmood et al (2012).24 This is the result of judgement based on economic reasoning. In some instances, the expectations are ambiguous, and we leave the outcome undetermined.…”
mentioning
confidence: 99%