The stator-rotor interaction is an important issue in turbomachinery design when the highest performances are targeted. Different characters mark the interaction process in high-pressure or low-pressure turbines depending both on the blade height and on the Reynolds number. For small blade heights, being the stator secondary flows more important, a more complex interaction is found with respect to the high blades, where the stator blade wake dominates. In low-pressure turbines, the stator wake promotes the transition to turbulent boundary layer, allowing for an efficient application of ultra-high lift blades. First, a detailed discussion of the flow physics is proposed for high-and low-pressure turbines. Some off-design conditions are also commented. Then, a design perspective is given by discussing the effect of the axial gap between the stator and the rotor and by commenting the effects of three-dimensional design on the interaction.