Allergen-specific IgE plays an essential role in the pathogenesis of allergic asthma. Although there has been increasing evidence suggesting the involvement of IL-17 in the disease, the relationship between IL-17 and IgE-mediated asthmatic responses has not yet been defined. In this study, we attempted to elucidate the contribution of IL-17 to an IgE-mediated late-phase asthmatic response and airway hyperresponsiveness (AHR). BALB/c mice passively sensitized with an OVA-specific IgE mAb were challenged with OVA intratracheally four times. The fourth challenge caused a late-phase increase in airway resistance associated with elevated levels of IL-17+CD4+ cells in the lungs. Multiple treatments with a C3a receptor antagonist or anti-C3a mAb during the challenges inhibited the increase in IL-17+CD4+ cells. Meanwhile, a single treatment with the antagonist or the mAb at the fourth challenge suppressed the late-phase increase in airway resistance, AHR, and infiltration by neutrophils in bronchoalveolar lavage fluid. Because IL-17 production in the lungs was significantly repressed by both treatments, the effect of an anti–IL-17 mAb was examined. The late-phase increase in airway resistance, AHR, and infiltration by neutrophils in bronchoalveolar lavage fluid was inhibited. Furthermore, an anti–Gr-1 mAb had a similar effect. Collectively, we found that IgE mediated the increase of IL-17+CD4+ cells in the lungs caused by repeated Ag challenges via C3a. The mechanisms leading to the IgE-mediated late-phase asthmatic response and AHR are closely associated with neutrophilic inflammation through the production of IL-17 induced by C3a.