Dry skin/barrier dysfunction is considered to be one of the characteristic features of atopic dermatitis (AD). When HR-1 hairless mice are fed a special diet, HR-AD, dry red skin is induced. We examined whether HR-AD-fed mouse could be used as a model for AD by showing itch-associated scratching behaviour and by analysing the immunological change. HR-1 mice were fed HR-AD from 4 weeks old. HR-AD-fed mice showed severe dry skin symptoms accompanied by a decrease in dermal water content and an increase in transepidermal water loss and prolonged scratching bout duration on day 14 or 28. These symptoms became gradually worse until day 56. Marked epidermal hyperplasia and slight increase in CD4+ cells in the skin were observed from day 28. In contrast, increases in circulating T cells and serum immunoglobulin E were seen from day 41. Other skin-infiltrating inflammatory cells, such as eosinophils and mast cells, were increased on day 56 but not on day 28. Though daily oral treatment with dexamethasone reduced the increased numbers of these cells, it did not affect the dry skin symptoms or the prolonged scratching episodes. In contrast, the development of dry skin was inhibited by feeding with 10% normal diet-containing HR-AD. The skin barrier dysfunction in HR-AD-fed mice is closely associated with the development of AD-like pruritus. Changes in the immunological parameters observed may be the consequence of skin barrier dysfunction. Our findings suggest that HR-AD-fed mouse could be used as a dry skin-based experimental model for AD.
Neutrophilic airway inflammation is a hallmark of patients with severe asthma. Although we have reported that both IL-33 and IL-17A contributed to IgE-mediated neutrophilic inflammation in mice, the relationship remains unclear. In this article, we examined how IL-17A modifies IL-33–induced neutrophilic inflammation and airway hyperresponsiveness (AHR). IL-33 was intratracheally administered to BALB/c mice on days 0–2; furthermore, on day 7, the effect of the combination of IL-33 and IL-17A was evaluated. Compared with IL-33 or IL-17A alone, the combination exacerbated neutrophilic inflammation and AHR, associated with more increased levels of lung glutamic acid-leucine-arginine+ CXC chemokines, including CXCL1, CXCL2, and CXCL5, and infiltration by alveolar macrophages expressing CXCR2. Treatment with anti-CXCR2 mAb or depletion of alveolar macrophages repressed neutrophilic inflammation and AHR; in addition, depletion of neutrophils suppressed AHR. These findings prompted us to examine the role of CXCR2 in IgE-sensitized mice; a single treatment with anti-CXCR2 mAb in the seventh Ag challenge inhibited late-phase airway obstruction, AHR, and neutrophilic inflammation. In addition to inhibition, multiple treatments during the fourth to seventh challenge attenuated early-phase airway obstruction, eosinophilic inflammation, and goblet cell hyperplasia associated with the reduction of Th2 cytokine production, including IL-4, IL-5, and IL-13. Collectively, IL-33 cooperated with IL-17A to exacerbate AHR by enhancing neutrophilic inflammation via CXCR2 signaling; furthermore, CXCR2 signaling derived Th2 responses. We thus suggest the underlying mechanisms of IL-33 and IL-17A in allergic asthma and CXCR2 as potential therapeutic targets for the disease.
These results indicate that the experimental allergic rhinitis established in the present study can be a valuable model for analyzing the pathogenesis of the disease and developing new therapeutic drugs.
Allergic asthma is a chronic inflammatory disorder of the airways characterized by biphasic airway obstruction and airway hyperresponsiveness. In this study, we attempted to elucidate the contribution of the complement C3a to these asthmatic symptoms. BALB/c mice sensitized by i.p. injections of OVA plus alum were challenged with OVA intratracheally four times. The fourth challenge caused a biphasic asthmatic response peaking at 10 min and 3–4 h, as well as airway hyperresponsiveness to methacholine. Histological examination revealed increased expression of C3a receptors in the lung on the fourth challenge. Additionally, the C3 level in serum 4 h after the fourth challenge was significantly reduced compared with that before the challenge. When a C3a receptor antagonist, SB290157, was administered i.p. 30 min before the fourth challenge, the late-phase asthmatic response and airway hyperresponsivness induced by the fourth challenge were significantly inhibited, although the early-phase response was not influenced. In bronchoalveolar lavage fluid, neutrophil infiltration 24 h after the fourth challenge was reduced by the treatment. On the other hand, SB290157 suppressed the increased expression of IL-1β in the lung in this model, and the intratracheal administration of IL-1β induced airway obstruction, airway hyperresponsiveness, and neutrophil infiltration in normal mice. These results illustrate that C3a is involved in the development of the late asthmatic response and airway hyperresponsiveness. The mechanism leading to the development of these symptoms may correlate with the recruitment of neutrophils and/or the production of IL-1β induced by C3a.
SummaryAllergen-specific IgE has long been regarded as a major molecular component of allergic asthma. Additionally, there is increasing evidence of the important roles of interleukin-33 (IL-33) in the disease. Here, we show that IL-33 and alveolar macrophages play essential roles in the exacerbation of IgE-mediated airway inflammation and remodelling. BALB/c mice passively sensitized with ovalbumin (OVA)-specific IgE monoclonal antibody (mAb) were challenged with OVA seven times intratracheally. The seventh challenge exacerbated airway inflammation and remodelling compared with the fourth challenge; furthermore, markedly increased expression of IL-33 in the lungs was observed at the fourth and seventh challenges. When anti-IL-33 or anti-ST2 antibody was administered during the fourth to seventh challenge, airway inflammation and remodelling were significantly inhibited at the seventh challenge. Because increases of IL-33 + and ST2 + alveolar macrophages and ST2 + CD4 + T cells in the lungs were observed at the fourth challenge, the roles of macrophages and CD4 + cells were investigated. Depletion of macrophages by 2-chloroadenosine during the fourth to seventh challenge suppressed airway inflammation and remodelling, and IL-33 production in the lung at the seventh challenge; additionally, anti-CD4 mAb inhibited airway inflammation, but not airway remodelling and IL-33 production. Meanwhile, treatment with 2-chloroadenosine or anti-CD4 mAb decreased IL-33-induced airway inflammation in normal mice; airway remodelling was repressed only by 2-chloroadenosine. These results illustrate that macrophage-derived IL-33 contributes to the exacerbation of IgE-mediated airway inflammation by mechanisms associated with macrophages and CD4 + cells, and airway remodelling through the activation of macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.