Sphingosine kinase-1 (SPHK1) is a key enzyme catalyzing the formation of an important bioactive lipid messenger, sphingosine 1-phosphate, and is implicated in the regulation of cell proliferation and antiapoptotic processes. Biological features of another isozyme SPHK2, however, remain unclear. The present studies were undertaken to characterize SPHK2 by comparison with SPHK1. When SPHK2 was transiently expressed in various cell lines, it was localized in the nuclei as well as in the cytosol, whereas SPHK1 was distributed in the cytosol but not in the nucleus. We have mapped a functional nuclear localization signal (NLS) to the N-terminal region of SPHK2. We have observed that the expression of SPHK2 in various cell types causes inhibition of DNA synthesis, resulting in the cell cycle arrest at G 1 /S phase. We have also demonstrated that an NLS mutant of SPHK2, SPHK2R93E/R94E, failed to enter the nucleus and to inhibit DNA synthesis. Moreover, a fusion protein, NLS-SPHK1, where SPHK1 was fused to the NLS sequence of SPHK2 acquired the ability to enter nuclei and inhibited DNA synthesis. These results indicate that SPHK2 localizes in the nuclei and causes inhibition of DNA synthesis, and this may affect subsequent cellular events.Sphingosine 1-phosphate (SPP) 1 is a bioactive lipid that regulates diverse biological processes such as calcium mobilization, cell growth, differentiation, survival, motility, and cytoskeletal reorganization, acting both inside and outside the cells (1, 2). Recently, SPP was identified as the ligand for a family of G protein-coupled receptors known as the endothelial differentiation gene-1 family, now collectively renamed SPP receptors (3-6), supporting a role for SPP as an extracellular ligand. However, the intracellular targets of SPP have not yet been identified.Sphingosine kinase (SPHK), the enzyme that catalyzes the phosphorylation of sphingosine, regulates the intracellular levels of SPP. Two isoforms of mammalian SPHK (SPHK1 and SPHK2) have been cloned and characterized (7,8). SPHK1 predominantly localizes in the cytosol, and its overexpression induces cell proliferation by promoting the G 1 to S transition of the cell cycle as well as by inhibiting the apoptotic response to serum deprivation or ceramide treatment (9). Several cellular proteins have recently been identified as SPHK1-interacting molecules, namely TRAF2 (10), RPK118 (11), and AKAP-related protein (12), which should help facilitate the understanding of the regulation and intracellular site of action of SPHK1.In contrast to SPHK1, little is known about the cellular actions of the other isozyme, SPHK2. In the present studies, we investigated the biological features of SPHK2. We have discovered that SPHK2 localizes in the nuclei of cells through its novel nuclear localization signal (NLS) sequence, depending on cell type and cell density. We have also demonstrated that nuclear localization of SPHK2 causes inhibition of DNA synthesis in various cell types.