Kaposi's sarcoma had been recognized as unique human cancer for a century before it manifested as an AIDS-defining illness with a suspected infectious etiology. The discovery of Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, in 1994 by using representational difference analysis, a subtractive method previously employed for cloning differences in human genomic DNA, was a fitting harbinger for the powerful bioinformatic approaches since employed to understand its pathogenesis in KS. Indeed, the discovery of KSHV was rapidly followed by publication of its complete sequence, which revealed that the virus had coopted a wide armamentarium of human genes; in the short time since then, the functions of many of these viral gene variants in cell growth control, signaling apoptosis, angiogenesis, and immunomodulation have been characterized. This critical literature review explores the pathogenic potential of these genes within the framework of current knowledge of the basic herpesvirology of KSHV, including the relationships between viral genotypic variation and the four clinicoepidemiologic forms of Kaposi's sarcoma, current viral detection methods and their utility, primary infection by KSHV, tissue culture and animal models of latent- and lytic-cycle gene expression and pathogenesis, and viral reactivation from latency. Recent advances in models of de novo endothelial infection, microarray analyses of the host response to infection, receptor identification, and cloning of full-length, infectious KSHV genomic DNA promise to reveal key molecular mechanisms of the candidate pathogeneic genes when expressed in the context of viral infection
Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus-8) establishes latent and lytic infections in both lymphoid and endothelial cells and has been associated with diseases of both cell types. The KSHV open reading frame 50 (ORF50) protein is a transcriptional activator that plays a central role in the reactivation of lytic viral replication from latency. Here we identify and characterize a DNA binding site for the ORF50 protein that is shared by the promoters of two delayed early genes (ORF57 and K-bZIP). Transfer of this element to heterologous promoters confers on them high-level responsiveness to ORF50, indicating that the element is both necessary and sufficient for activation. The element consists of a conserved 12-bp palindromic sequence and less conserved sequences immediately 3 to it. Mutational analysis reveals that sequences within the palindrome are critical for binding and activation by ORF50, but the presence of a palindrome itself is not absolutely required. The 3 flanking sequences also play a critical role in DNA binding and transactivation. The strong concordance of DNA binding in vitro with transcriptional activation in vivo strongly implies that sequence-specific DNA binding is necessary for ORF50-mediated activation through this element. Expression of truncated versions of the ORF50 protein reveals that DNA binding is mediated by the amino-terminal 272 amino acids of the polypeptide.Infection by Kaposi's sarcoma-associated herpesvirus (KSHV) also known as human herpesvirus 8 (HHV-8) is associated with malignancies of both endothelial and lymphoid cells in humans. KSHV has been well established as the etiologic agent responsible for Kaposi's sarcoma (KS), an endothelial neoplasm frequent in homosexual men with AIDS and highly prevalent in sub-Saharan Africa (reviewed in reference 25). KSHV is also linked to two other AIDS-related malignancies, primary effusion lymphoma and multicentric Castleman's disease (5, 26). The presence of viral DNA in CD19 ϩ B cells and other mononuclear cells of the peripheral blood of KS/ AIDS patients (1, 2, 31), even prior to full-blown KS, suggests that infection of the lymphoid compartment is antecedent to the development of the endothelial disease.KSHV infection, similar to infection by other herpesviruses, displays two life cycle modes, latency and lytic replication. Latency is established by the virus both in endothelial and B cells and is detectable in such cell types both in vitro and in infected hosts (1,3,7,19,22,27,31). KSHV latency-associated genes are expressed in most spindle cells of KS tumors and are thought to contribute to their survival and proliferation (25). However, many viral genes (e.g., vGCR and vMIPs I and II) encoding homologs of cellular signaling proteins which have been suspected of roles in the histogenesis of KS are expressed strictly as lytic cycle products (13,20,23,24,28). This suggests that the KSHV lytic cycle may also contribute to KS lesion formation. Additional support for this notion comes from stud...
The import of proteins into the nucleus is dependent on cis-acting targeting sequences, nuclear localization signals (NLSs), and members of the nuclear transport receptor (importin-beta-like) superfamily. The most extensively characterized import pathway, often termed the classical pathway, is utilized by many basic-type (lysine-rich) NLSs and requires an additional component, importin alpha, to serve as a bridge between the NLS and the import receptor importin beta. More recently, it has become clear that a variety of proteins enter the nucleus via alternative import receptors and that their NLSs bind directly to those receptors. By using the digitonin-permeabilized cell system for protein import in vitro, we have defined the import pathway for the Rex protein of human T-cell leukemia virus type 1. Interestingly, the arginine-rich NLS of Rex uses importin beta for import but does so by a mechanism that is importin alpha independent. Based on the ability of the Rex NLS to inhibit the import of the lysine-rich NLS of T antigen and of both NLSs to be inhibited by the domain of importin alpha that binds importin beta (the IBB domain), we infer that the Rex NLS interacts with importin beta directly. In addition, and in keeping with other receptor-mediated nuclear import pathways, Rex import is dependent on the integrity of the Ran GTPase cycle. Based on these results, we suggest that importin beta can mediate the nuclear import of arginine-rich NLSs directly, or lysine-rich NLSs through the action of importin alpha.
During the process of lymphocyte homing to secondary lymphoid organs, such as lymph nodes and tonsils, lymphocytes interact with and cross a specialized microvasculature, known as high endothelial venules. There is a great deal of information available about the first steps in the homing cascade, but molecular understanding of lymphocyte transmigration through the intercellular junctions of high endothelial venules is lacking. In analyzing expressed sequence tags from a cDNA library prepared from human tonsillar high endothelial cells, we have identified a cDNA encoding a novel member of the immunoglobulin superfamily. The protein, which we have termed VE-JAM ("vascular endothelial junction-associated molecule"), contains two extracellular immunoglobulin-like domains, a transmembrane domain, and a relatively short cytoplasmic tail. VE-JAM is prominently expressed on high endothelial venules but is also present on the endothelia of other vessels. Strikingly, it is highly localized to the intercellular boundaries of high endothelial cells. VE-JAM is most homologous to a recently identified molecule known as Junctional Adhesion Molecule, which is concentrated at the intercellular boundaries of both epithelial and endothelial cells. Because the Junctional Adhesion Molecule has been strongly implicated in the processes of neutrophil and monocyte transendothelial migration, an analogous function of VE-JAM during lymphocyte homing is plausible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.