The SARS-CoV-2 Omicron variant of concern comprises several sublineages with BA.2 and BA.2.12.1 having replaced the previously dominant BA.1, and BA.4 and BA.5 increasing in prevalence worldwide. We show that the large number of Omicron sublineage spike mutations lead to enhanced ACE2 binding, reduced fusogenicity, and severe dampening of plasma neutralizing activity elicited by infection or seven clinical vaccines relative to the ancestral virus. Administration of a homologous or heterologous booster based on the Wuhan-Hu-1 spike sequence markedly increased neutralizing antibody titers and breadth against BA.1, BA.2, BA.2.12.1, and BA.4/5 across all vaccines evaluated. Our data suggest that although Omicron sublineages evade polyclonal neutralizing antibody responses elicited by primary vaccine series, vaccine boosters may provide sufficient protection against Omicron-induced severe disease.