Rain falling from the sky is viewed as a clean energy source with a great potential, owing to the large amount of it and its zero pollution nature, the fact that it has scattered raindrops, and its characteristic rainfall concentration that promotes extensive research on harvesting and utilization. Here, we introduce a new approach to harvest rainwater on rooftops called the Rain-Power Utilization System, which is composed of an initial rainwater disposal system and multistage energy conversion system. Initial rainwater is discharged into a split-flow pipe due to its poor quality and impurities. Additionally, clean rainwater is accumulated in a storage pipe until the water level reaches a specified height, triggering siphonage for energy conversion. The same process is repeated in other storage pipes connected in series. Function relations among physical and dimension parameters have been established for further studies. A kind of simplified optimization algorithm has been proposed considering the maximum instantaneous power under the constraint of a permitted vacuum and maximum energy generation per unit length to find the model with an optimal height combination (hu, hd). The experimental prototype developed in proportion is used to verify theoretical research and conduct error analysis to establish an equation of annual energy generation for a high-rise building. Without building extra tanks, this paper presents an innovative approach to maximizing the use of energy in rain for high-rise buildings based on a siphon.