In this study, the performance of a direct current (DC)-DC buck converter is analyzed in the presence of non-idealities in passive components and semiconductor devices. The effect of these non-idealities on the various design issues of a DC-DC buck converter is studied. An improved expression for duty cycle is developed to compensate the losses that occur because of the non-idealities. The design equations for inductor and capacitor calculation are modified based on this improved expression. The effect of the variation in capacitor equivalent series resistance (ESR) on output voltage ripple (OVR) is analyzed in detail. It is observed that the value of required capacitance increases with ESR. However, beyond a maximum value of ESR (r c,max ), the capacitor is unable to maintain OVR within a specified limit. The expression of r c,max is derived in terms of specified OVR and inductor current ripple. Finally, these theoretical studies are validated through MATLAB simulation and experimental results.