In this paper, bilateral teleoperation of multiple slaves coupled to a single master under scheduling communication is investigated. The sampled-data transmission between the master and the multiple slaves is fulfilled over a delayed communication network, and at each sampling instant, only one slave is allowed to transmit its current information to the master side according to some scheduling protocols. To achieve the masterslave synchronization, Round-Robin scheduling protocol and Try-Once-Discard scheduling protocol are employed, respectively. By designing a scheduling-communication-based controller, some sufficient stability criteria related to the controller gain matrices, sampling intervals, and communication delays are obtained for the closed-loop teleoperation system under Round-Robin and Try-Once-Discard scheduling protocols, respectively. Finally, simulation studies are given to validate the effectiveness of the proposed results.