Experimental and clinical studies are progressing simultaneously to investigate the mechanisms and efficacy of progenitor cell treatment after an acute myocardial infarction and in chronic congestive heart failure. Multipotent progenitor cells appear to be capable of improving cardiac perfusion and/or function; however, the mechanisms still are unclear, and the issue of whether or not trans-differentiation occurs remains unsettled. Both experimentally and clinically, cells originating from different tissues have been shown capable of restoring cardiac function, but more recently multiple groups have identified resident cardiac progenitor cells that seem to participate in regenerating the heart after injury. Clinically, cells originating from blood or bone marrow have been proven to be safe whereas injection of skeletal myoblasts has been associated with the occurrence of ventricular arrhythmias. Myoblasts can transform into rapidly beating myotubes; however, thus far convincing evidence for electro-mechanical coupling between myoblasts and cardiomyocytes is lacking. Moving forward, mechanistic studies will benefit from the use of genetic markers and Cre/lox reporter systems that are less prone to misinterpretation than fluorescent antibodies, and a more convincing answer regarding therapeutic efficacy will come from adequately powered randomized placebo controlled trials. Gene Therapy (2006) 13, 659-671.