Background-This study evaluated the hypothesis that transendocardial injections of autologous mononuclear bone marrow cells in patients with end-stage ischemic heart disease could safely promote neovascularization and improve perfusion and myocardial contractility. Methods and Results-Twenty-one patients were enrolled in this prospective, nonrandomized, open-label study (first 14 patients, treatment; last 7 patients, control). Baseline evaluations included complete clinical and laboratory evaluations, exercise stress (ramp treadmill), 2D Doppler echocardiogram, single-photon emission computed tomography perfusion scan, and 24-hour Holter monitoring. Bone marrow mononuclear cells were harvested, isolated, washed, and resuspended in saline for injection by NOGA catheter (15 injections of 0.2 cc). Electromechanical mapping was used to identify viable myocardium (unipolar voltage Ն6.9 mV) for treatment. Treated and control patients underwent 2-month noninvasive follow-up, and treated patients alone underwent a 4-month invasive follow-up according to standard protocols and with the same procedures used as at baseline. Patient population demographics and exercise test variables did not differ significantly between the treatment and control groups; only serum creatinine and brain natriuretic peptide levels varied in laboratory evaluations at follow-up, being relatively higher in control patients. At 2 months, there was a significant reduction in total reversible defect and improvement in global left ventricular function within the treatment group and between the treatment and control groups (Pϭ0.02) on quantitative single-photon emission computed tomography analysis. At 4 months, there was improvement in ejection fraction from a baseline of 20% to 29% (Pϭ0.003) and a reduction in end-systolic volume (Pϭ0.03) in the treated patients. Electromechanical mapping revealed significant mechanical improvement of the injected segments (PϽ0.0005) at 4 months after treatment. Conclusions-Thus, the present study demonstrates the relative safety of intramyocardial injections of bone marrowderived stem cells in humans with severe heart failure and the potential for improving myocardial blood flow with associated enhancement of regional and global left ventricular function. (Circulation. 2003;107:2294-2302.)
Background-We recently reported the safety and feasibility of autologous bone marrow mononuclear cell (ABMMNC) injection into areas of ischemic myocardium in patients with end-stage ischemic cardiomyopathy. The present study evaluated the safety and efficacy of this therapy at 6-and 12-month follow-up. Methods and Results-Twenty patients with 6-and 12-month follow-up (11 treated subjects; 9 controls) were enrolled in this prospective, nonrandomized, open-label study. Complete clinical and laboratory evaluations as well as exercise stress (ramp treadmill), 2-dimensional Doppler echocardiography, single-photon emission computed tomography (SPECT) perfusion scanning, and 24-hour Holter monitoring were performed at baseline and follow-up. Transendocardial delivery of ABMMNCs was performed with the aid of electromechanical mapping to identify viable myocardium. Each patient received 15 ABMMNC injections of 0.2 mL each. At 6 and 12 months, total reversible defect, as measured by SPECT perfusion scanning, was significantly reduced in the treatment group as compared with the control group. At 12 months, exercise capacity was significantly improved in the treatment group. This improvement correlated well with monocyte, B-cell, hematopoietic progenitor cell, and early hemapoietic progenitor cell phenotypes. Conclusions-The 6-and 12-month follow-up data in this study suggest that transendocardial injection of ABMMNCs in patients with end-stage ischemic heart disease may produce a durable therapeutic effect and improve myocardial perfusion and exercise capacity.
The objective of this study was to investigate safety and feasibility of autologous bone marrow mononuclear cells (BMMNC) transplantation in ST elevation myocardial infarction (STEMI), comparing anterograde intracoronary artery (ICA) delivery with retrograde intracoronary vein (ICV) approach. An open labeled, randomized controlled trial of 30 patients admitted with STEMI was used. Patients were enrolled if they 1) were successfully reperfused within 24 h from symptoms onset and 2) had infarct size larger than 10% of the left ventricle (LV). One hundred million BMMNC were injected in the infarct-related artery (intraarterial group) or vein (intravenous group), 1% of which was labeled with Tc 99m -hexamethylpropylenamineoxime. Cell distribution was evaluated 4 and 24 h after injection. Baseline MRI was performed in order to evaluate microbstruction pattern. Baseline radionuclide ventriculography was performed before cell transfer and after 3 and 6 months. All the treated patients were submitted to repeat coronary angiography after 3 months. Thirty patients (57 ± 11 years, 70% males) were randomly assigned to ICA (n = 14), ICV (n = 10), or control (n = 6) groups. No serious adverse events related to the procedure were observed. Early and late retention of radiolabeled cells was higher in the ICA than in the ICV group, independently of microcirculation obstruction. An increase of EF was observed in the ICA group (p = 0.02) compared to baseline. Injection procedures through anterograde and retrograde approaches seem to be feasible and safe. BMMNC retention by damaged heart tissue was apparently higher when the anterograde approach was used. Further studies are required to confirm these initial data.
Background-Cell-based therapies for treatment of ischemic heart disease are currently under investigation. We previously reported the results of a phase I trial of transendocardial injection of autologous bone marrow mononuclear (ABMM) cells in patients with end-stage ischemic heart disease. The current report focuses on postmortem cardiac findings from one of the treated patients, who died 11 months after cell therapy. Methods and Results-Anatomicopathologic, morphometric, and immunocytochemical findings from the anterolateral ventricular wall (with cell therapy) were compared with findings from the interventricular septum (normal perfusion and no cell therapy) and from the inferoposterior ventricular wall (extensive scar tissue and no cell therapy). No signs of adverse events were found in the cell-injected areas. Capillary density was significantly higher (PϽ0.001) in the anterolateral wall than in the previously infarcted tissue in the posterior wall. The prominent vasculature of the anterolateral wall was associated with hyperplasia of pericytes, mural cells, and adventitia. Some of these cells had acquired cytoskeletal elements and contractile proteins (troponin, sarcomeric ␣-actinin, actinin), as well as the morphology of cardiomyocytes, and appeared to have migrated toward adjacent bundles of cardiomyocytes. Conclusions-Eleven months after treatment, morphological and immunocytochemical analysis of the sites of ABMM cell injection showed no abnormal cell growth or tissue lesions and suggested that an active process of angiogenesis was present in both the fibrotic cicatricial tissue and the adjacent cardiac muscle. Some of the pericytes had acquired the morphology of cardiomyocytes, suggesting long-term sequential regeneration of the cardiac vascular tree and muscle.
Background: Cardiovascular diseases are the major cause of death in the world. Current treatments have not been able to reverse this scenario, creating the need for the development of new therapies. Cell therapies have emerged as an alternative for cardiac diseases of distinct causes in experimental animal studies and more recently in clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.