This paper develops a uniformly valid and asymptotically nonconservative test based on projection for a class of shape restrictions. The key insight we exploit is that these restrictions form convex cones, a simple and yet elegant structure that has been barely harnessed in the literature. Based on a monotonicity property afforded by such a geometric structure, we construct a bootstrap procedure that, unlike many studies in nonstandard settings, dispenses with estimation of local parameter spaces, and the critical values are obtained in a way as simple as computing the test statistic. Moreover, by appealing to strong approximations, our framework accommodates nonparametric regression models as well as distributional/density‐related and structural settings. Since the test entails a tuning parameter (due to the nonstandard nature of the problem), we propose a data‐driven choice and prove its validity. Monte Carlo simulations confirm that our test works well.