This paper reviews the development of boron neutron capture therapy (BNCT) and describes the design and dosimetry of an intermediate energy neutron beam, developed at the Harwell Laboratory, principally for BNCT research. Boron neutron capture therapy is a technique for the treatment of gliomas (a fatal form of brain tumour). The technique involves preferentially attaching 10B atoms to tumour cells and irradiating them with thermal neutrons. The thermal neutron capture products of 10B are short range and highly damaging, so they kill the tumour cells, but healthy tissue is relatively undamaged. Early trials required extensive neurosurgery to exposure the tumour to the thermal neutrons used and were unsuccessful. It is thought that intermediate-energy neutrons will overcome many of the problems encountered in the early trials, because they have greater penetration prior to thermalization, so that surgery will not be required. An intermediate-energy neutron beam has been developed at the Harwell Laboratory for research into BNCT. Neutrons from the core of a high-flux nuclear reactor are filtered with a combination of iron, aluminium and sulphur. Dosimetry measurements have been made to determine the neutron and gamma-ray characteristics of this beam, and to monitor them throughout the four cycles used for BNCT research. The beam is of high intensity (approximately 2 x 10(7) neutrons cm-2 s-1, equivalent to a neutron kerma rate in water of 205 mGy h-1) and nearly monoenergetic (93% of the neutrons have energies approximately 24 keV, corresponding to 79% of the neutron kerma rate).