Insects such as honeybees are capable of fusing the information sensed by multiple sensory organs for attitude and heading determination. In this paper, inspired by the sensory fusion mechanism of insects’ polarization compass and haltere, a bioinspired polarization-based attitude and heading reference system (PAHRS) is presented. The PAHRS consists of compound eye polarization compass and inertial measurement unit (IMU). By simulating multi-view structure of the dorsal rim area in insects’ compound eyes, a non-coplanar ‘polarization-opponent (POL)-type’ architecture is adopted for the compound eye polarization compass. The polarization compass has multi-directional observation channels, which is capable of adaptively selecting the angle of polarization and obtaining the polarization vectors. Therefore, the environmental adaptability of the polarization compass can be enhanced. In addition, the integration strategy between the compound eye polarization compass and IMU is proposed. Moreover, the sources of system errors are analyzed to improve the heading angle accuracy, based on which a new calibration model is established to compensate the installation errors of the PAHRS. Finally, experiments are carried out under both clear sky and cloudy conditions. The test results show that the error root mean square of heading angle is 0.14° in clear sky, and 0.42° in partly cloudy conditions.