Modern performance earthquake engineering practices frequently require a large number of time‐consuming non‐linear time‐history simulations to appropriately address excitation and structural uncertainties when estimating engineering demand parameter (EDP) distributions. Surrogate modeling techniques have emerged as an attractive tool for alleviating such high computational burden in similar engineering problems. A key challenge for the application of surrogate models in earthquake engineering context relates to the aleatoric variability associated with the seismic hazard. This variability is typically expressed as high‐dimensional or non‐parametric uncertainty, and so cannot be easily incorporated within standard surrogate modeling frameworks. Rather, a surrogate modeling approach that can directly approximate the full distribution of the response output is warranted for this application. This approach needs to additionally address the fact that the response variability may change as input parameter changes, yielding a heteroscedastic behavior. Stochastic emulation techniques have emerged as a viable solution to accurately capture aleatoric uncertainties in similar contexts, and recent work by the second author has established a framework to accommodate this for earthquake engineering applications, using Gaussian Process (GP) regression to predict the EDP response distribution. The established formulation requires for a portion of the training samples the replication of simulations for different descriptions of the aleatoric uncertainty. In particular, the replicated samples are used to build a secondary GP model to predict the heteroscedastic characteristics, and these predictions are then used to formulate the primary GP that produces the full EDP distribution. This practice, however, has two downsides: it always requires minimum replications when training the secondary GP, and the information from the non‐replicated samples is utilized only for the primary GP. This research adopts an alternative stochastic GP formulation that can address both limitations. To this end, the secondary GP is trained by measuring the square of sample deviations from the mean instead of the crude sample variances. To establish the primitive mean estimates, another auxiliary GP is introduced. This way, information from all replicated and non‐replicated samples is fully leveraged for estimating both the EDP distribution and the underlying heteroscedastic behavior, while formulation accommodates an implementation using no replications. The case study examples using three different stochastic ground motion models demonstrate that the proposed approach can address both aforementioned challenges.