2019
DOI: 10.1007/978-3-030-32258-8_51
|View full text |Cite
|
Sign up to set email alerts
|

Improved Particle Swarm Medical Image Segmentation Algorithm for Decision Making

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
1
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(2 citation statements)
references
References 3 publications
0
1
0
1
Order By: Relevance
“…Our method harnesses the power of particle swarm optimization (PSO) [22] in conjunction with histogram equalization (HE) [23] with the aim of significantly enhancing the accuracy and robustness of image segmentation in the medical domain. PSO emerges as a promising optimization framework for addressing the intricacies of medical image segmentation [24,25]. Inspired by the collective behavior of swarming particles, PSO excels at finding optimal solutions in complex, multidimensional spaces [26].…”
Section: Introductionmentioning
confidence: 99%
“…Our method harnesses the power of particle swarm optimization (PSO) [22] in conjunction with histogram equalization (HE) [23] with the aim of significantly enhancing the accuracy and robustness of image segmentation in the medical domain. PSO emerges as a promising optimization framework for addressing the intricacies of medical image segmentation [24,25]. Inspired by the collective behavior of swarming particles, PSO excels at finding optimal solutions in complex, multidimensional spaces [26].…”
Section: Introductionmentioning
confidence: 99%
“…Эволюционные алгоритмы применяются для решения множества практических задач, таких как составление расписаний в промышленности [15,16], оптимизация разводки печатных плат [17][18][19][20], построение систем управления [21][22][23][24][25][26][27], сегментирование изображений [28], а также приближенного решения других задач комбинаторной [29][30][31][32] и вещественной оптимизации [33][34][35].…”
Section: Introductionunclassified