Suspended solids in the injection water cause impairment of water injectivity during waterflooding operations. Suspended solids affect reservoir properties and decrease the permeability of reservoir rocks causing an increase of injection pressure and a decrease in water injectivity. Removal of all suspended solids from injection water is an expensive and economically unfeasible process. To minimize the effects of suspended solids to the formation, it is necessary to determine an impairment mechanism of suspended solids on oil displacement and, therefore, optimize the water treatment process. In this paper, an analytical model that describes the relationship between injection water quality and impairment mechanisms on oil displacement is presented. A formation impairment was calculated, introducing the parameter called impairment ratio, which represents the ratio between suspended solids and pore size distribution of reservoir rock. Based on the impairment ratio, decreases in porosity and permeability were calculated with changes in capillary pressure, relative permeability, and displacement efficiency. The model was tested for three different types of injection water. Results indicated the presence of formation impairment even with the smallest particles. Suspended solids had the greatest influence on porosity and permeability impairment. The model could be used as input for reservoir modelling studies for monitoring and controlling displacement efficiency during waterflooding as well as for planning and modification of water treatment units.