2013
DOI: 10.2478/tmmp-2013-0001
|View full text |Cite
|
Sign up to set email alerts
|

Improved Stability Estimates for Impulsive Delay Reaction-Diffusion Cohen-Grossberg Neural Networks Via Hardy-Poincaré Inequality

Abstract: An impulsive Cohen-Grossberg neural network with time-varying and S-type distributed delays and reaction-diffusion terms is considered. By using Hardy-Poincaré inequality instead of Hardy-Sobolev inequality or just the nonpositivity of the reaction-diffusion operators, under suitable conditions in terms of M-matrices which involve the reaction-diffusion coefficients and the dimension and size of the spatial domain, improved stability estimates for the system with zero Dirichlet boundary conditions are obtained… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?