To assess the uncertainty of meteorological simulations in the transport and deposition of radio‐Cs release associated with the Fukushima Daiichi Nuclear Power Station accident in Japan, a multiple meteorological model and module ensemble analysis with a single chemical transport model (CTM) was conducted. Although several multimodel ensemble studies have previously been performed, the current type (i.e., one CTM with several meteorological fields) was applied for the first time and represents a useful way to evaluate the uncertainty of each component of CTM. The current analysis concluded that the underestimation of the deposition efficiency of CTM was the reason for the underestimation of simulated radio‐Cs deposition, whereas the simulated dispersion and precipitation and estimated source term were all reasonable: all of the simulations underestimated the deposition amount, whereas some underestimated but others overestimated the simulated precipitation and radio‐Cs concentrations. The CTM simulation performed using the meteorological ensemble mean field was successful in reducing variance, and they gave reasonable results. The simulated deposition using the meteorological ensemble was better than others because the ensemble mean enlarged the light precipitation areas and because the land contamination was mainly caused by light precipitation. The current ensemble study indicated that in‐cloud scavenging was the most dominant mechanism of radio‐Cs deposition, followed by dry deposition and fog deposition over the entire land area. In some deposition regions, fog deposition was dominant, exceeding 80%, depending on the simulations. The simulated concentrations and depositions varied by more than twofold, depending on the selection of the meteorological field.