Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Microspores are preferred explant choice for genetic transformation, as their use shortens the duration of obtaining homozygous transformants. All established gene-delivery methods of particle bombardment, electroporation, and cocultivation with Agrobacterium tumefaciens were optimized on androgenic microspores or derived tissues. In the biolistic gene delivery method 35-40 days old haploid microspore embryoids were used for genetic transformation, whereas freshly isolated androgenic microspores were used for genetic transformation in the electroporation and Agrobacterium cocultivation-based methods. The genetic transformation methods of biolistic gene-delivery and electroporation gave rise to the chimeric plants, whereas the method involving cocultivation with Agrobacterium yielded homozygous transformants. These methods were tested on a large number of cultivars belonging to different market classes of wheat, and found to be fairly independent of the explant genotype. Other benefits of using microspores or derived tissues for transformation are: (1) a few explant donors are required to obtain desired transformants and (2) the time required for obtaining homozygous transformants is about 8 months in case of spring wheat genotypes and about a year in case of winter wheat genotypes.
Microspores are preferred explant choice for genetic transformation, as their use shortens the duration of obtaining homozygous transformants. All established gene-delivery methods of particle bombardment, electroporation, and cocultivation with Agrobacterium tumefaciens were optimized on androgenic microspores or derived tissues. In the biolistic gene delivery method 35-40 days old haploid microspore embryoids were used for genetic transformation, whereas freshly isolated androgenic microspores were used for genetic transformation in the electroporation and Agrobacterium cocultivation-based methods. The genetic transformation methods of biolistic gene-delivery and electroporation gave rise to the chimeric plants, whereas the method involving cocultivation with Agrobacterium yielded homozygous transformants. These methods were tested on a large number of cultivars belonging to different market classes of wheat, and found to be fairly independent of the explant genotype. Other benefits of using microspores or derived tissues for transformation are: (1) a few explant donors are required to obtain desired transformants and (2) the time required for obtaining homozygous transformants is about 8 months in case of spring wheat genotypes and about a year in case of winter wheat genotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.