During the last two decades, DNA-based molecular markers have been extensively utilized for a variety of studies in both plant and animal systems. One of the major uses of these markers is the construction of genome-wide molecular maps and the genetic analysis of simple and complex traits. However, these studies are generally based on linkage analysis in mapping populations, thus placing serious limitations in using molecular markers for genetic analysis in a variety of plant systems. Therefore, alternative approaches have been suggested, and one of these approaches makes use of linkage disequilibrium (LD)-based association analysis. Although this approach of association analysis has already been used for studies on genetics of complex traits (including different diseases) in humans, its use in plants has just started. In the present review, we first define and distinguish between LD and association mapping, and then briefly describe various measures of LD and the two methods of its depiction. We then give a list of different factors that affect LD without discussing them, and also discuss the current issues of LD research in plants. Later, we also describe the various uses of LD in plant genomics research and summarize the present status of LD research in different plant genomes. In the end, we discuss briefly the future prospects of LD research in plants, and give a list of softwares that are useful in LD research, which is available as electronic supplementary material (ESM).
Nearly 900 SSRs (simple sequence repeats) were identified among 15,000 ESTs (expressed sequence tags) belonging to bread wheat ( Triticum aestivumL.). The SSRs were defined by their minimum length, which ranged from 14 to 21 bp. The maximum length ranged from 24 to 87 bp depending upon the length of the repeat unit itself (1-7 bp). The average density of SSRs was one SSR per 9.2 kb of EST sequence screened. The trinucleotide repeats were the most abundant SSRs detected. As a representative sample, 78 primer pairs were designed, which were also used to screen the dbEST entries for Hordeum vulgare and Triticum tauschii (donor of the D-genome of cultivated wheat) using a cut-off E (expectation) value of 0.01. On the basis of in silico analysis, up to 55.12% of the primer pairs exhibited transferability from Triticum to Hordeum, indicating that the sequences flanking the SSRs are not only conserved within a single genus but also between related genera in Poaceae. Primer pairs for the 78 SSRs were synthesized and used successfully for the study of (1) their transferability to 18 related wild species and five cereal species (barley, oat, rye, rice and maize); and (2) polymorphism between the parents of four mapping populations available with us. A subset of 20 EST-SSR primers was also used to assess genetic diversity in a collection of 52 elite exotic wheat genotypes. This was done with a view to compare their utility relative to other molecular markers (gSSRs, AFLPs, and SAMPL) previously used by us for the same purpose with the same set of 52 bread wheat genotypes. Although only a low level of polymorphism was detected, relative to that observed with genomic SSRs, the study suggested that EST-SSRs can be successfully used for a variety of purposes, and may actually prove superior to SSR markers extracted from genomic libraries for diversity estimation and transferability.
Allopolyploidization has been a driving force in plant evolution. Formation of common wheat (Triticum aestivum L.) represents a classic example of successful speciation via allopolyploidy. Nevertheless, the immediate chromosomal consequences of allopolyploidization in wheat remain largely unexplored. We report here an in-depth investigation on transgenerational chromosomal variation in resynthesized allohexaploid wheats that are identical in genome constitution to common wheat. We deployed sequential FISH, genomic in situ hybridization (GISH), and homeolog-specific pyrosequencing, which enabled unequivocal identification of each of the 21 homologous chromosome pairs in each of >1,000 individual plants from 16 independent lines. We report that wholechromosome aneuploidy occurred ubiquitously in early generations (from selfed generation S 1 to >S 20 ) of wheat allohexaploidy although at highly variable frequencies (20-100%). In contrast, other types of gross structural variations were scant. Aneuploidy included an unexpected hidden type, which had a euploid chromosome number of 2n = 42 but with simultaneous loss and gain of nonhomeologous chromosomes. Of the three constituent subgenomes, B showed the most lability for aneuploidy, followed by A, but the recently added D subgenome was largely stable in most of the studied lines. Chromosome loss and gain were also unequal across the 21 homologous chromosome pairs. Pedigree analysis showed no evidence for progressive karyotype stabilization even with multigenerational selection for euploidy. Profiling of two traits directly related to reproductive fitness showed that although pollen viability was generally reduced by aneuploidy, the adverse effect of aneuploidy on seed-set is dependent on both aneuploidy type and synthetic line.chromosome dynamics | hidden aneuploidy | synthetic wheat | wheat evolution H exaploid common wheat (Triticum aestivum L.) is a major food crop with international significance, the evolution of which is characterized by two sequential allopolyploidization events: one leading to formation of allotetraploid wheat (T. turgidum L.) and the other to allohexaploid wheat (T. aestivum) (1, 2). Despite decades of research, the mechanisms by which the initial allopolyploid individuals became stabilized, established, and accumulate to successful speciation remains largely unknown in this important crop. In theory, chromosome-level perturbation should be among the first manifestations of nascent allopolyploidization. Indeed, two recent molecular cytogenetic studies, in resynthesized allotetraploid Brassica napus lines (3) and young natural allotetraploid Tragopogon miscellus populations (4), respectively, have provided unique insights into the chromosomal dynamics associated with nascent allotetraploidy. Being at the resolution of individual chromosomes, these studies have documented a surprisingly high incidence of both structural and numerical changes in nascent allotetraploid plants (3, 4). It was found that early generations of resynthesized allotetrap...
The last two decades have witnessed a remarkable activity in the development and use of molecular markers both in animal and plant systems. This activity started with lowthroughput restriction fragment length polymorphisms and culminated in recent years with single nucleotide polymorphisms (SNPs), which are abundant and uniformly distributed. Although the latter became the markers of choice for many, their discovery needed previous sequence information. However, with the availability of microarrays, SNP platforms have been developed, which allow genotyping of thousands of markers in parallel. Besides SNPs, some other novel marker systems, including single feature polymorphisms, diversity array technology and restriction site-associated DNA markers, have also been developed, where arraybased assays have been utilized to provide for the desired ultra-high throughput and low cost. These microarray-based markers are the markers of choice for the future and are already being used for construction of high-density maps, quantitative trait loci (QTL) mapping (including expression QTLs) and genetic diversity analysis with a limited expense in terms of time and money. In this study, we briefly describe the characteristics of these array-based marker systems and review the work that has already been done involving development and use of these markers, not only in simple eukaryotes like yeast, but also in a variety of seed plants with simple or complex genomes.
Cytosine methylation at CG sites ( m CG) plays critical roles in development, epigenetic inheritance, and genome stability in mammals and plants. In the dicot model plant Arabidopsis thaliana, methyltransferase 1 (MET1), a principal CG methylase, functions to maintain m CG during DNA replication, with its null mutation resulting in global hypomethylation and pleiotropic developmental defects. Null mutation of a critical CG methylase has not been characterized at a whole-genome level in other higher eukaryotes, leaving the generality of the Arabidopsis findings largely speculative. Rice is a model plant of monocots, to which many of our important crops belong. Here we have characterized a null mutant of OsMet1-2, the major CG methylase in rice. We found that seeds homozygous for OsMet1-2 gene mutation (OsMET1-2 −/− ), which directly segregated from normal heterozygote plants (OsMET1-2 +/− ), were seriously maldeveloped, and all germinated seedlings underwent swift necrotic death. Compared with wild type, genome-wide loss of m CG occurred in the mutant methylome, which was accompanied by a plethora of quantitative molecular phenotypes including dysregulated expression of diverse protein-coding genes, activation and repression of transposable elements, and altered small RNA profiles. Our results have revealed conservation but also distinct functional differences in CG methylases between rice and Arabidopsis.Oryza sativa L. | monocotyledons C ytosine methylation is an evolutionarily conserved epigenetic modification across biological kingdoms (1-3). However, fundamental differences exist for this epigenetic mark between animals and plants in many aspects (1-3). For example, in mammalian somatic cells, methylated cytosines ( m Cs) occur almost exclusively in a CG sequence context, and CG methylation ( m CG) is maintained during DNA replication by a single CG methylase, DNA methyltransferase 1 (DNMT1). Cytosine methylation in plants is more complex, occurs in all sequence contexts (CG, CHG, and CHH; where H is A, T, or C), and is established and maintained by multiple enzymes that have distinct but also overlapping functions (2, 4-6). Nevertheless, m CG stands out as the most pervasive type (2). In the dicot model plant Arabidopsis thaliana, m CG is maintained by a major CG methylase, namely DNA methyltransferase 1 (MET1), the homolog of mammalian DNMT1 (2, 7-11). Null mutation of MET1 (the homozygous met1 mutant) virtually eliminates genome-wide m CG to 1.7% that of wild type (WT), that is, from 24.6% in WT to 0.42% in mutant (12, 13). Homozygous null met1 mutant can be obtained from selfed progenies of heterozygotes (MET1 +/− ) but was often at much lower frequencies than expected by Mendelian segregation (11). Homozygous Arabidopsis met1 plants show pleiotropic developmental abnormalities of variable penetrance, which aggravate in frequency and severity with inbreeding (11). Although conditional knockout DNMT1 mutants were established in human colorectal carcinoma cell lines (14) and loss-of-function DNA methyltran...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.