Allopolyploidization has been a driving force in plant evolution. Formation of common wheat (Triticum aestivum L.) represents a classic example of successful speciation via allopolyploidy. Nevertheless, the immediate chromosomal consequences of allopolyploidization in wheat remain largely unexplored. We report here an in-depth investigation on transgenerational chromosomal variation in resynthesized allohexaploid wheats that are identical in genome constitution to common wheat. We deployed sequential FISH, genomic in situ hybridization (GISH), and homeolog-specific pyrosequencing, which enabled unequivocal identification of each of the 21 homologous chromosome pairs in each of >1,000 individual plants from 16 independent lines. We report that wholechromosome aneuploidy occurred ubiquitously in early generations (from selfed generation S 1 to >S 20 ) of wheat allohexaploidy although at highly variable frequencies (20-100%). In contrast, other types of gross structural variations were scant. Aneuploidy included an unexpected hidden type, which had a euploid chromosome number of 2n = 42 but with simultaneous loss and gain of nonhomeologous chromosomes. Of the three constituent subgenomes, B showed the most lability for aneuploidy, followed by A, but the recently added D subgenome was largely stable in most of the studied lines. Chromosome loss and gain were also unequal across the 21 homologous chromosome pairs. Pedigree analysis showed no evidence for progressive karyotype stabilization even with multigenerational selection for euploidy. Profiling of two traits directly related to reproductive fitness showed that although pollen viability was generally reduced by aneuploidy, the adverse effect of aneuploidy on seed-set is dependent on both aneuploidy type and synthetic line.chromosome dynamics | hidden aneuploidy | synthetic wheat | wheat evolution H exaploid common wheat (Triticum aestivum L.) is a major food crop with international significance, the evolution of which is characterized by two sequential allopolyploidization events: one leading to formation of allotetraploid wheat (T. turgidum L.) and the other to allohexaploid wheat (T. aestivum) (1, 2). Despite decades of research, the mechanisms by which the initial allopolyploid individuals became stabilized, established, and accumulate to successful speciation remains largely unknown in this important crop. In theory, chromosome-level perturbation should be among the first manifestations of nascent allopolyploidization. Indeed, two recent molecular cytogenetic studies, in resynthesized allotetraploid Brassica napus lines (3) and young natural allotetraploid Tragopogon miscellus populations (4), respectively, have provided unique insights into the chromosomal dynamics associated with nascent allotetraploidy. Being at the resolution of individual chromosomes, these studies have documented a surprisingly high incidence of both structural and numerical changes in nascent allotetraploid plants (3, 4). It was found that early generations of resynthesized allotetrap...
BackgroundConventional prenatal screening tests, such as maternal serum tests and ultrasound scan, have limited resolution and accuracy.MethodsWe developed an advanced noninvasive prenatal diagnosis method based on massively parallel sequencing. The Noninvasive Fetal Trisomy (NIFTY) test, combines an optimized Student’s t-test with a locally weighted polynomial regression and binary hypotheses. We applied the NIFTY test to 903 pregnancies and compared the diagnostic results with those of full karyotyping.Results16 of 16 trisomy 21, 12 of 12 trisomy 18, two of two trisomy 13, three of four 45, X, one of one XYY and two of two XXY abnormalities were correctly identified. But one false positive case of trisomy 18 and one false negative case of 45, X were observed. The test performed with 100% sensitivity and 99.9% specificity for autosomal aneuploidies and 85.7% sensitivity and 99.9% specificity for sex chromosomal aneuploidies. Compared with three previously reported z-score approaches with/without GC-bias removal and with internal control, the NIFTY test was more accurate and robust for the detection of both autosomal and sex chromosomal aneuploidies in fetuses.ConclusionOur study demonstrates a powerful and reliable methodology for noninvasive prenatal diagnosis.
Hexaploid bread wheat (Triticum aestivum L., genome BBAADD) is generally more salt tolerant than its tetraploid wheat progenitor (Triticum turgidum L.). However, little is known about the physiological basis of this trait or about the relative contributions of allohexaploidization and subsequent evolutionary genetic changes on the trait development. Here, we compared the salt tolerance of a synthetic allohexaploid wheat (neo-6x) with its tetraploid (T. turgidum; BBAA) and diploid (Aegilops tauschii; DD) parents, as well as a natural hexaploid bread wheat (nat-6x). We studied 92 morphophysiological traits and analyzed homeologous gene expression of a major salt-tolerance gene High-Affinity K + Transporter 1;5 (HKT1;5). We observed that under salt stress, neo-6x exhibited higher fitness than both of its parental genotypes due to inheritance of favorable traits like higher germination rate from the 4x parent and the stronger root Na + retention capacity from the 2x parent. Moreover, expression of the D-subgenome HKT1;5 homeolog, which is responsible for Na + removal from the xylem vessels, showed an immediate transcriptional reprogramming following allohexaploidization, i.e., from constitutive high basal expression in Ae. tauschii (2x) to salt-induced expression in neo-6x. This phenomenon was also witnessed in the nat-6x. An integrated analysis of 92 traits showed that, under salt-stress conditions, neo-6x resembled more closely the 2x than the 4x parent, suggesting that the salt stress induces enhanced expressivity of the D-subgenome homeologs in the synthetic hexaploid wheat. Collectively, the results suggest that condition-dependent functionalization of the subgenomes might have contributed to the wide-ranging adaptability of natural hexaploid wheat.transcriptional rewiring | Na + homeostasis | salinity tolerance P olyploidy or whole genome duplication (WGD) is a pervasive, driving force in plant and vertebrate evolution, which has fascinated biologists for more than a century (1, 2). The common occurrence of WGD suggests an evolutionary advantage of having multiple genomes at least in certain circumstances, which might have enabled the polyploid organisms to be better adapted to some adverse environmental conditions than their diploid progenitors (3, 4). Polyploidy can instantaneously develop novel features that allow them to invade new territories or expand their parental niche (3). Polyploids may also exhibit higher evolvability than their diploid progenitors, which allows them to adapt to capricious environmental conditions (4). Thus, polyploidy has been demonstrated as a process that may lead to saltational speciation especially when novel ecological niches are available for colonization.Although abrupt genome duplication often produces adverse effects on physiology at both cellular and organismal levels (4, 5), it has been shown that polyploidy in plants may result in favorable physiological consequences such as increased photosynthetic capacity and enhanced tolerance to biotic and abiotic stresses, which ...
Polyploidy, which results from whole genome duplication (WGD), has shaped the long-term evolution of eukaryotic genomes in all kingdoms. Polyploidy is also implicated in adaptation, domestication, and speciation. Yet when WGD newly occurs, the resulting neopolyploids face numerous challenges. A particularly pernicious problem is the segregation of multiple chromosome copies in meiosis. Evolution can overcome this challenge, likely through modification of chromosome pairing and recombination to prevent deleterious multivalent chromosome associations, but the molecular basis of this remains mysterious. We study mechanisms underlying evolutionary stabilization of polyploid meiosis using Arabidopsis arenosa, a relative of A. thaliana with natural diploid and meiotically stable autotetraploid populations. Here we investigate the effects of ancestral (diploid) versus derived (tetraploid) alleles of two genes, ASY1 and ASY3, that were among several meiosis genes under selection in the tetraploid lineage. These genes encode interacting proteins critical for formation of meiotic chromosome axes, long linear multiprotein structures that form along sister chromatids in meiosis and are essential for recombination, chromosome segregation, and fertility. We show that derived alleles of both genes are associated with changes in meiosis, including reduced formation of multichromosome associations, reduced axis length, and a tendency to more rod-shaped bivalents in metaphase I. Thus, we conclude that ASY1 and ASY3 are components of a larger multigenic solution to polyploid meiosis in which individual genes have subtle effects. Our results are relevant for understanding polyploid evolution and more generally for understanding how meiotic traits can evolve when faced with challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.