Abstract. Computer Interpretable Guidelines (CIGs) are assuming a major role in the medical area, in order to enhance the quality of medical assistance by providing physicians with evidence-based recommendations. However, the complexity of CIGs (which may contain hundreds of related clinical activities) demands for a verification process, aimed at assuring that a CIG satisfies several different types of properties (e.g., verification of the CIG correctness with respect to several criteria). Verification is a demanding task, which may be enhanced through the adoption of advanced Artificial Intelligence techniques. In this paper, we propose a general and hybrid approach to address such a task, suggesting that, given the heterogeneous character of the knowledge in CIGs, different forms of verification should be supported, through the adoption of proper (and different) methodologies.