Abstract-Coverage of interest points and network connectivity are two main challenging and practically important issues of Wireless Sensor Networks (WSNs). Although many studies have exploited the mobility of sensors to improve the quality of coverage and connectivity, little attention has been paid to the minimization of sensors' movement, which often consumes the majority of the limited energy of sensors and thus shortens the network lifetime significantly. To fill in this gap, this paper addresses the challenges of the Mobile Sensor Deployment (MSD) problem and investigates how to deploy mobile sensors with minimum movement to form a WSN that provides both target coverage and network connectivity. To this end, the MSD problem is decomposed into two sub-problems: the Target COVerage (TCOV) problem and the Network CONnectivity (NCON) problem. We then solve TCOV and NCON one by one and combine their solutions to address the MSD problem. The NP-hardness of TCOV is proved. For a special case of TCOV where targets disperse from each other farther than double of the coverage radius, an exact algorithm based on the Hungarian method is proposed to find the optimal solution. For general cases of TCOV, two heuristic algorithms, i.e., the Basic algorithm based on clique partition and the TV-Greedy algorithm based on Voronoi partition of the deployment region, are proposed to reduce the total movement distance of sensors. For NCON, an efficient solution based on the Steiner minimum tree with constrained edge length is proposed. The combination of the solutions to TCOV and NCON, as demonstrated by extensive simulation experiments, offers a promising solution to the original MSD problem that balances the load of different sensors and prolongs the network lifetime consequently.