Polycyclic saturated hydrocarbons (PSHs) are attractive candidates as hydrocarbon propellants. To assess their potential values, one of the key factors is to determine their energy contents, such as to calculate their heats of formation (HOF). In this work, we have calculated HOFs for a set of 36 PSHs including exo-Tricyclo[5.2.1.0 (2,6) ] decane, the principal component of the high-energy density hydrocarbon fuel commonly identified as JP-10. The results from B3LYP, B3LYP-D3BJ, M06-2X, B2PLYP, B2PLYP-D3BJ, and the XYG3 type of doubly hybrid (xDH) functionals are presented. It is demonstrated here that the xDH functionals yield accurate HOFs in good agreement with those from experiments or the G4 theory. In particular, XYGJ-OS, a low scaling xDH functional, is shown to hold the promise for accurate prediction of HOFs for PSHs of larger sizes.