A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and openshell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller-Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr 2 dimer, exploring zeolitecatalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube.Keywords quantum chemistry, software, electronic structure theory, density functional theory, electron correlation, computational modelling, Q-Chem Disciplines Chemistry CommentsThis article is from Molecular Physics: An International Journal at the Interface Between Chemistry and Physics 113 (2015): 184, doi:10.1080/00268976.2014. RightsWorks produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted. Authors 185A summary of the technical advances that are incorporated in the fourth major release of the Q-CHEM quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller-Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly corre...
This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design.
We develop and validate a density functional, XYG3, based on the adiabatic connection formalism and the Gö rling-Levy couplingconstant perturbation expansion to the second order (PT2). XYG3 is a doubly hybrid functional, containing 3 mixing parameters. It has a nonlocal orbital-dependent component in the exchange term (exact exchange) plus information about the unoccupied KohnSham orbitals in the correlation part (PT2 double excitation). XYG3 is remarkably accurate for thermochemistry, reaction barrier heights, and nonbond interactions of main group molecules. In addition, the accuracy remains nearly constant with system size.Becke 3-parameter hybrid functional combined with Lee-Yang-Parr correlation functional ͉ density functional theory ͉ generalized gradient approximation ͉ local density approximation ͉ mean absolute deviation D ensity functional theory (DFT) has revolutionized the role of theory by providing accurate first-principles predictions of critical properties for applications in physics, chemistry, biology, and materials science (1). Despite dramatic successes, there remain serious deficiencies, for example, in describing weak interactions (London dispersion), which are so important to the packing of molecules into solids, the binding of drug molecules to proteins, and the magnitude of reaction barriers. We propose here a DFT functional that dramatically improves the accuracy for these properties by including the role of the virtual (unoccupied) states.Solution of the Schrödinger equation leads to the wavefunction, (r 1 , r 2 , …, r N ) (2), which depends on the 3N space coordinates and N spin coordinates of N-electrons in the system. Solving for such a wavefunction usually starts with the HartreeFock (HF) mean field description involving N self-consistent 1-particle spin-orbitals (in a Slater determinant), which is then used as the basis for expanding the wavefunction in a hierarchy of excited N-electron configurations, by using methods referred to as Møller-Plesset theory (e.g., MP2, MP3, MP4), couplecluster theory (e.g., CCSD(T)), and quadratic configuration interaction theory (e.g., QCISD(T)), etc. These methods are ab initio but suffer from problems of slow convergence with the size of the basis sets and the configuration expansion lengths, preventing scaling to large systems.In contrast, DFT is formulated in terms of the 1-particle density, (r), depending on only 3 spatial coordinates rather than 3N, as the fundamental quantity (3, 4). This dramatically simplifies the process of calculating the structures and properties. However, the exact form of the functional, whose solution will lead to the correct density, is not known. Even so, there has been an evolution of successively better approximations to this functional, that has already provided quite good accuracy for many problems (5-15).Perdew (16) has formulated the hierarchy of DFT approximations as a ''Jacob's ladder'' rising from the ''earth of Hartree'' to the ''heaven of chemical accuracy.'' The first rung of this ladder is the local (s...
The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn-Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS densityfunctional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations. T he most basic property of a periodic solid is its fundamental energy gap G, which vanishes for a metal but is positive for semiconductors and other insulators. G dominates many properties. As the unbound limit of an exciton series, G is an excitation energy of the neutral solid, but it is defined here as a difference of ground-state energies: If EðMÞ is the ground-state energy for a solid with a fixed number of nuclei and M electrons, and if M = N for electrical neutrality, thenis the difference between the first ionization energy IðNÞ and the first electron affinity AðNÞ of the neutral solid. Whereas I and A can be measured for a macroscopic solid, they can be computed directly (as ground-state energy differences) either by starting from finite clusters and extrapolating to infinite cluster size or (for I-A) by starting from a finite number of primitive unit cells, with periodic boundary condition on the surface of this finite collection, and extrapolating to an infinite number. Here we shall follow both approaches, which have been discussed in a recent study (1). (The energy to remove an electron to infinite separation cannot depend upon the crystal face through which it is removed, although the energy to remove an electron to a macroscopic separation, but much smaller than the dimensions of that face, may so depend. The gap is of course a bulk property.) Band-Gap Problem in Kohn-Sham Density-Functional TheoryKohn-Sham density-functional theory (2, 3) is a formally exact way to compute the ground-state energy and electron density of M interacting electrons in a multiplicative external potential. This theory sets up a fictitious system of noninteracting electrons with the same ground-state density as the real interacting system, found by solving self-consistent one-electron Schrödinger equations. These electrons move in a multiplicative effective Kohn-Sham (KS) potential, the sum of the external and Hartree potentials and the derivative of the density functional for...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.