Genome-wide association studies (GWASs), also called common variant association studies (CVASs), have uncovered thousands of genetic variants associated with hundreds of diseases. However, the variants that reach statistical significance typically explain only a small fraction of the heritability. One explanation for the "missing heritability" is that there are many additional disease-associated common variants whose effects are too small to detect with current sample sizes. It therefore is useful to have methods to quantify the heritability due to common variation, without having to identify all causal variants. Recent studies applied restricted maximum likelihood (REML) estimation to case-control studies for diseases. Here, we show that REML considerably underestimates the fraction of heritability due to common variation in this setting. The degree of underestimation increases with the rarity of disease, the heritability of the disease, and the size of the sample. Instead, we develop a general framework for heritability estimation, called phenotype correlation-genotype correlation (PCGC) regression, which generalizes the well-known Haseman-Elston regression method. We show that PCGC regression yields unbiased estimates. Applying PCGC regression to six diseases, we estimate the proportion of the phenotypic variance due to common variants to range from 25% to 56% and the proportion of heritability due to common variants from 41% to 68% (mean 60%). These results suggest that common variants may explain at least half the heritability for many diseases. PCGC regression also is readily applicable to other settings, including analyzing extreme-phenotype studies and adjusting for covariates such as sex, age, and population structure.genome-wide association studies | statistical genetics | heritability estimation C omprehensive genomic studies have begun to uncover the genetic basis of common polygenic inherited diseases and traits, identifying thousands of loci and pointing to key biological pathways. However, the genetic variants implicated so far account for less than half the estimated heritability of most diseases and traits (1). Explaining the remainder of the heritabilityoften termed "missing heritability"-is of considerable biological interest and medical importance. This is our third article on exploring the mystery of missing heritability.In our first paper (2), we noted that some of the apparently missing heritability may arise from a methodological issue. Specifically, we showed that the presence of genetic interactions among loci might substantially inflate estimates of the total (narrow-sense) heritability and thus overstate the extent of missing heritability. However, this likely is only a partial explanation.In our second paper (3), we explored the design of association studies to discover genetic variants associated with the risk of a disease or trait. Specifically, our paper focused on rare variant association studies (RVASs), for which large-scale comprehensive efforts are just becoming feasible with...