2019
DOI: 10.15587/1729-4061.2019.174488
|View full text |Cite
|
Sign up to set email alerts
|

Improving the diagnostics of underground pipelines at oil­and­gas enterprises based on determining hydrogen exponent (PH) of the soil media applying neural networks

Abstract: Сформовано множину визначальних параметрiв та iнформацiйних потокiв для моделювання етапiв зондування зовнiшньої поверхнi пiдземного металевого трубопроводу (ПМТ) з урахуванням водневого показника (ВП) ґрунту, який контактує з металом труби. Проведено обстеження зразкiв сталi 17Г1С, помiщених у кислi, лужнi та нейтральнi середовища. Обстеження здiйснено за допомогою вимiрювача поляризацiйного потенцiалу у комплексi з безконтактним вимiрювачем струму. Сформульовано принципи використання нейронної мережi (НМ) дл… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
15
0

Year Published

2019
2019
2023
2023

Publication Types

Select...
3
2

Relationship

1
4

Authors

Journals

citations
Cited by 7 publications
(15 citation statements)
references
References 24 publications
0
15
0
Order By: Relevance
“…It was established that the issue of quality of underground metal pipelines (UMP) is associated with processes at the interface "metal-soil environment" [5].…”
Section: Literature Review and Problem Statementmentioning
confidence: 99%
See 4 more Smart Citations
“…It was established that the issue of quality of underground metal pipelines (UMP) is associated with processes at the interface "metal-soil environment" [5].…”
Section: Literature Review and Problem Statementmentioning
confidence: 99%
“…The models of damage in metals, reported in the scientific literature, are compared based on the depth of corrosion, choosing different influential parameters to model similar classes of corrosion according to requirements by standards [6]. Papers [3][4][5][6] do not account for the features of mechanical loading (internal hydrostatic pressure, soil pressure, etc. ), and do not consider informational streams for defect detection.…”
Section: Literature Review and Problem Statementmentioning
confidence: 99%
See 3 more Smart Citations