Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Under the background of rapid advancements in photovoltaic technology, crystalline silicon (c-Si) solar cells, as the mainstream photovoltaic devices, have gained significant research attention for their excellent performances. In particular, silicon heterojunction (SHJ) solar cells, TOPCon (Tunnel Oxide Passivated Contact), and PERC (Passivated Emitter and Rear Cell) represent the cutting-edge technologies in c-Si solar cells. The surface passivation layer of crystalline silicon solar cells, as one of the key factors to improve cell performances, has been closely linked to the development of crystalline silicon solar cells. Due to the complex mechanism of passivation layer and the high demand of experimental research, it is challenging to achieve high quality surface passivation. This paper comprehensively reviews the key issues and research progress in interface passivation technologies for SHJ, TOPCon, and PERC solar cells. Firstly, the research progress of key technology breakthrough of SHJ solar cell is reviewed systematically, and the influences of growth conditions and doping layer on the passivation performances of SHJ solar cell are discussed in detail. Secondly, the important strategies and research achievements for improving the passivation performances of TOPCon and PERC solar cells in the past five years are systematically described. Finally, the development trend of passivation layer technology is prospected. This review offers valuable insights for future technological improvements and performance enhancements in c-Si solar cells.
Under the background of rapid advancements in photovoltaic technology, crystalline silicon (c-Si) solar cells, as the mainstream photovoltaic devices, have gained significant research attention for their excellent performances. In particular, silicon heterojunction (SHJ) solar cells, TOPCon (Tunnel Oxide Passivated Contact), and PERC (Passivated Emitter and Rear Cell) represent the cutting-edge technologies in c-Si solar cells. The surface passivation layer of crystalline silicon solar cells, as one of the key factors to improve cell performances, has been closely linked to the development of crystalline silicon solar cells. Due to the complex mechanism of passivation layer and the high demand of experimental research, it is challenging to achieve high quality surface passivation. This paper comprehensively reviews the key issues and research progress in interface passivation technologies for SHJ, TOPCon, and PERC solar cells. Firstly, the research progress of key technology breakthrough of SHJ solar cell is reviewed systematically, and the influences of growth conditions and doping layer on the passivation performances of SHJ solar cell are discussed in detail. Secondly, the important strategies and research achievements for improving the passivation performances of TOPCon and PERC solar cells in the past five years are systematically described. Finally, the development trend of passivation layer technology is prospected. This review offers valuable insights for future technological improvements and performance enhancements in c-Si solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.