This paper is an enhancement to our earlier research with grey-scale images. In this paper, we propose two new detection-estimation based image filtering algorithms that effectively remove corrupted pixels with impulsive noise in digital color images. The existing methods for enhancing corrupted color images typically possess inherent problems in computation time and smoothing out edges because all pixels are filtered. Our proposed algorithms first classify corrupted pixels in each channel or in each pixel. Because marginal or vector median filtering is only performed for the classified pixels, the process is computationally efficient, and edges are preserved well. In addition, because there is no appropriate criterion to evaluate the performance of impulsive noise detectors for color images, the objective comparison of noise detectors is difficult. Thus, we introduce a new efficiency factor for comparing the performance of noise detectors in digital color images. Simulation results show that the proposed algorithms perform better than existing methods, in both objective and subjective evaluations.