a b s t r a c tImage restoration is one of the most fundamental issues in imaging science. Total variation regularization is widely used in image restoration problems for its capability to preserve edges. In the literature, however, it is also well known for producing staircase artifacts. In this work we extend the total variation with overlapping group sparsity, which we previously developed for one dimension signal processing, to image restoration. A convex cost function is given and an efficient algorithm is proposed for solving the corresponding minimization problem. In the experiments, we compare our method with several state-of-the-art methods. The results illustrate the efficiency and effectiveness of the proposed method in terms of PSNR and computing time.
The total variation (TV) regularization method is an effective method for image deblurring in preserving edges. However, the TV based solutions usually have some staircase effects. In order to alleviate the staircase effects, we propose a new model for restoring blurred images under impulse noise. The model consists of an ℓ1-fidelity term and a TV with overlapping group sparsity (OGS) regularization term. Moreover, we impose a box constraint to the proposed model for getting more accurate solutions. The solving algorithm for our model is under the framework of the alternating direction method of multipliers (ADMM). We use an inner loop which is nested inside the majorization minimization (MM) iteration for the subproblem of the proposed method. Compared with other TV-based methods, numerical results illustrate that the proposed method can significantly improve the restoration quality, both in terms of peak signal-to-noise ratio (PSNR) and relative error (ReE).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.