This paper presents a novel collision avoidance (CA) algorithm for a cooperative fixed-wing unmanned aerial vehicle (UAV). The method is based on maneuver coordination and planned trajectory prediction. Each aircraft in a conflict generates three available maneuvers and predicts the corresponding planned trajectories. The algorithm coordinates planned trajectories between participants in a conflict, determines which combination of planned trajectories provides the best separation, eventually makes an agreement on the maneuver for collision avoidance and activates the preferred maneuvers when a collision is imminent. The emphasis is placed on providing protection for UAVs, while activating maneuvers late enough to reduce interference, which is necessary for collision avoidance in the formation and clustering of UAVs. The CA has been validated with various simulations to show the advantage of collision avoidance for continuous conflicts in multiple, high-dynamic, high-density and three-dimensional (3D) environments. It eliminates the disadvantage of traditional CA, which has high uncertainty, and takes the performance parameters of different aircraft into consideration and makes full use of the maneuverability of fixed-wing aircraft.